《慕课网-体系课-LLM大语言模型算法特训 带你转型AI大语言模型算法工程师 》

《慕课网-体系课-LLM大语言模型算法特训 带你转型AI大语言模型算法工程师 》 简介:慕课网-体系课-LLM大语言模型算法特训 带你转型AI大语言模型算法工程师是一本围绕其核心主题展开的深刻探索之作,书中详细讨论了与其主题相关的各类观点与现实应用,带给读者全新的思考视角。这本书为那些想深入了解相关领域的读者提供了充实的内容,值得一读。更多详情请访问相关链接。 标签: #慕课网#慕课网-体系课-LLM大语言模型算法特训 带你转型AI大语言模型算法工程师#书籍 文件大小:NG 链接:https://pan.quark.cn/s/44c7b7c0fd8c

相关推荐

封面图片

大语言模型(LLM)微调技术笔记 || #笔记

大语言模型(LLM)微调技术笔记 || #笔记 在预训练后,大模型可以获得解决各种任务的通用能力。然而,越来越多的研究表明,大语言模型的能力可以根据特定目标进一步调整。这就是微调技术,目前主要有两种微调大模型的方法 1:指令微调,目标是增强(或解锁)大语言模型的能力。 2:对齐微调,目标是将大语言模型的行为与人类的价值观或偏好对齐。

封面图片

体系课-Java工程师 2022版

体系课-Java工程师 2022版 描述:2022全新升级,就业率常年霸榜,王牌编程语言 0基础入门,高效掌握Java工程师所需能力,冲击大厂高薪 给你更高的就业起点,更好的就业终点 链接: 大小:NG 标签:#学习 #知识 #课程 来自:雷锋 频道:@Aliyundrive_Share_Channel 群组:@alyd_g 投稿:@AliYunPanBot

封面图片

体系课-Go开发工程师

体系课-Go开发工程师 描述:随着云计算与5G的普及,数据运算性能逐渐成为后端开发的考量标准 未来3-5年,Go语言势必成为企业在高性能项目中不可替代的开发语言 现在学习Go语言,抓紧机遇,冲击大厂高薪。 链接: 大小:未统计 标签:#课程 #知识 来自:雷锋 频道:@Aliyundrive_Share_Channel 群组:@alyd_g 投稿:@AliYunPanBot

封面图片

是一个基于大语言模型(llm)的文本风格迁移(text style transfer)项目。利用大语言模型来学习指定文学作品

是一个基于大语言模型(llm)的文本风格迁移(text style transfer)项目。项目利用大语言模型来学习指定文学作品的写作风格(惯用词汇、句式结构、修辞手法、人物对话等),形成了一系列特定风格的模型。 利用stylellm模型可将学习到的风格移植至其他通用文本上,即:输入一段原始文本,模型可对其改写,输出带有该风格特色的文本,达到文字修饰、润色或风格模仿的效果。

封面图片

教你从零开始构建类似 ChatGPT 的大语言模型。

教你从零开始构建类似 ChatGPT 的大语言模型。 在 GitHub 上发现一本《Build a Large Language Model (From Scratch)》书籍。 作者将带你从头开始构建一个类似 GPT 语言模型,这过程让你了解如何创建、训练和微调大型语言模型 (LLMs)! 书籍主要分为 8 大章节,如下: 第 1 章:了解大语言模型(LLM)解析 第 2 章:介绍文本数据处理技巧 第 3 章:通过编程实现注意力机制(Attention Mechanisms) 第 4 章:从零开始实现类似 GPT 模型 第 5 章:对未标注数据进行预训练 第 6 章:针对文本分类的模型微调 第 7 章:结合人类反馈进行模型微调 第 8 章:在实践中使用大语言模型 书籍前两章内容已出,剩下的会逐步放出。 |

封面图片

富士通发布"Fugaku-LLM" 在超级计算机"富岳"上训练的日语增强大语言模型

富士通发布"Fugaku-LLM" 在超级计算机"富岳"上训练的日语增强大语言模型 理化学研究所的超级计算机 Fugaku为了在 Fugaku 上训练大型语言模型,研究人员开发了分布式训练方法,包括将深度学习框架 Megatron-DeepSpeed 移植到 Fugaku,以优化变形金刚在 Fugaku 上的性能。他们加速了 Transformers 的密集矩阵乘法库,并通过结合三种并行化技术优化了 Fugaku 的通信性能,还加速了 Tofu 互联 D 上的集体通信库。Fugaku-LLM 有 130 亿个参数,比日本广泛开发的 70 亿个参数模型更大。Fugaku-LLM 增强了日语能力,在日语 MT-Bench 中平均得分 5.5,是使用日本原始数据训练的开放模型中最高的。特别是人文和社会科学任务的基准性能达到了 9.18 分的惊人高分。Fugaku-LLM 是在 CyberAgent 收集的日语专有数据、英语数据和其他数据的基础上进行训练的。Fugaku-LLM 的源代码可在 GitHub 上获取,模型可在 Hugging Face 上获取。只要用户遵守许可证,Fugaku-LLM 可用于研究和商业目的。未来,随着更多研究人员和工程师参与改进模型及其应用,训练效率将得到提高,从而实现下一代创新研究和商业应用,例如科学模拟与生成式人工智能的联动,以及拥有成千上万人工智能的虚拟社区的社会模拟。研究背景近年来,大型语言模型(LLM)的发展十分活跃,尤其是在美国。其中,由 OpenAI 开发的 ChatGPT(6) 的迅速普及,对研发、经济体系和国家安全产生了深远影响。除美国外,其他国家也在本国投入大量人力和计算资源开发 LLM。日本也需要确保用于人工智能研究的计算资源,以免在这场全球竞赛中落后。人们对日本的旗舰超级计算机系统"Fugaku"寄予厚望,因此有必要改善在"Fugaku"上进行大规模分布式培训的计算环境,以满足这些期望。因此,东京工业大学、东北大学、富士通公司、理化学研究所、名古屋大学、CyberAgent 和 Kotoba Technologies 启动了一项关于开发大型语言模型的联合研究项目。各机构/公司的作用东京工业大学:大型语言模型的总体监督、并行化和通信加速(通过三种并行化组合优化通信性能,加速 Tofu 互联 D 上的集体通信)东北大学收集训练数据和选择模型富士通加速计算和通信(加速 Tofu 互联 D 上的集体通信、优化流水线并行化的性能)以及实施预训练和训练后微调理化学研究所:大规模语言模型的分布式并行化和通信加速(Tofu 互联 D 上的集体通信加速)名古屋大学研究 Fugaku-LLM 在 3D 生成式人工智能中的应用方法CyberAgent:提供训练数据Kotoba Technologies:将深度学习框架移植到 Fugaku未来发展这项研究的成果将通过 GitHub 和 Hugging Face 公开,以便其他研究人员和工程师可以利用这些成果进一步开发大型语言模型。只要用户遵守许可协议,Fugaku-LLM 可用于研究和商业目的。从 2024 年 5 月 10 日起,Fugaku-LLM 还将通过富士通研究门户网站提供给用户。未来,随着越来越多的研究人员和工程师参与到模型及其应用的改进中来,训练的效率将得到提高,从而实现下一代创新研究和商业应用,例如科学模拟与生成式人工智能的联系,以及拥有成千上万人工智能的虚拟社区的社会模拟。本研究得到了 Fugaku 政策支持提案"利用 Fugaku 开发大型语言模型的分布式并行训练"(提案号:hp230254)的支持。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人