词表的选择如何影响语言模型训练?这可能是目前见过最好的词表选择研究 #抽屉IT

None

相关推荐

封面图片

:大语言模型裁剪工具。通过对大语言模型的冗余词表进行裁剪,减少模型参数量,降低显存占用,提升训练速度,并且能够保留预训练中学习到

:大语言模型裁剪工具。通过对大语言模型的冗余词表进行裁剪,减少模型参数量,降低显存占用,提升训练速度,并且能够保留预训练中学习到的知识。 大语言模型(LLM, Large Language Model)犹如雨后春笋般,其虽然效果惊艳,但参数量巨大,让普通玩家望而却步。 如今的大语言模型大多为多语种大预言模型(Multilingual Large Language Model),如LLaMA、mT5、Bloom等,其词表规模巨大,占据非常大部分的模型参数,如Bloom具有25万词表。 在训练模型时,词表权重将会消耗非常大的显存,降低训练速度,产生OOM的现象。 但在许多下游任务中,一般只会用到一两种语言,例如在中文场景中,一般只会用到中英文。 我们可以对大语言模型的词表进行裁剪,只留下所需的部分,这样不仅能够充分保留模型的预训练知识,并且能够使用更少的显卡进行下游任务的finetune,提升训练效率。 | #工具

封面图片

| #指南 - Transformer是训练语言模型最常用的架构。预训练再微调是训练语言模型的主要方法。

| #指南 - Transformer是训练语言模型最常用的架构。预训练再微调是训练语言模型的主要方法。 - 微调需要收集任务特定的数据集,一般大小在几十MB到几GB。 - 数据预处理非常重要,需要将数据清理成合适的格式,如JSONL。 - 主要的训练超参数包括batch size、epoch数、学习率、梯度累积步数等。 - LoRA是一种减少GPU内存占用的微调方法,QLoRA则通过量化进一步降低了内存需求。 - 学习曲线可以诊断模型的训练情况,判断是否欠拟合、过拟合或拟合良好。 - 模型量化可以降低模型大小,使大模型也能在低显存环境下使用。 - 模型适配器方法可以进行个性化微调而不加载整个模型。 - 模型融合可以组合多个模型的优势得到更优的单模型。 - 合理配置训练超参数以及诊断学习曲线对获得期望的模型至关重要。

封面图片

GPT是如何获得它的能力的? 追踪语言模型的涌现能力 | 最近,OpenAI的预训练模型ChatGPT给人工智能领域的研究人员留

GPT是如何获得它的能力的? 追踪语言模型的涌现能力 | 最近,OpenAI的预训练模型ChatGPT给人工智能领域的研究人员留下了深刻的印象和启发。毫无疑问,它又强又聪明,且跟它说话很好玩,还会写代码。它在多个方面的能力远远超过了自然语言处理研究者们的预期。于是就有一个问题:ChatGPT 是怎么变得这么强的?它的各种强大的能力到底从何而来?在这篇文章中,我们试图剖析 ChatGPT 的突现能力(Emergent Ability),追溯这些能力的来源,希望能够给出一个全面的技术路线图,来说明 GPT-3.5 模型系列以及相关的大型语言模型是如何一步步进化成目前的强大形态。 这篇文章旨在能够促进大型语言模型的透明度,成为开源社区共同努力复现 GPT-3.5 的路线图。

封面图片

:更好的通用预训练语言模型

:更好的通用预训练语言模型 Pile-T5通过在Pile数据集上预训练T5模型,并使用LLAMA分词器,改进了原始T5的编码能力。 Pile-T5总体上明显优于原始T5v1.1模型,尤其在代码任务上的提升更大。这主要得益于Pile中包含代码数据以及LLAMA分词器包含编程常用字符。 在多个下游任务的微调中,Pile-T5不同规模的模型表现优异,如在SuperGLUE、CodeXGLUE、MMLU和BigBench Hard上的结果。 尽管与专门微调的Flan-T5相比略逊色,但Pile-T5仍优于T5v1.1,表明其预训练质量更高,更适合多任务微调。 公开了Pile-T5模型在不同训练步长的中间检查点,这有利于模型演化和解释性研究。 Pile-T5 Large模型在某些任务上的表现不佳,可能存在bug,用户需谨慎使用。

封面图片

这可算是我2022年见过的最好的空投了~

封面图片

归纳了当前视觉语言模型的主要方法,即对比学习、掩码、生成式和利用预训练模型,阐述了各自的工作机制、优势和局限,为视觉语言模型研究

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人