《细胞》子刊:问世间情为何物?神经生物学家:多巴胺 #抽屉IT

None

相关推荐

封面图片

神经生物学家发现了压力如何转化为恐惧 以及阻止它的方法

神经生物学家发现了压力如何转化为恐惧 以及阻止它的方法 发表在《科学》(Science)杂志上的最新研究确定了导致广泛恐惧体验的大脑生物化学和神经回路。图中,神经元显示为青色,逆行追踪器显示为黄色和品红色。资料来源:加州大学圣地亚哥分校斯皮策实验室但是,如果在没有实际威胁的情况下产生恐惧,就会对我们的健康造成危害。那些遭受过严重或危及生命的压力的人,即使在没有实际威胁的情况下,也会产生强烈的恐惧感。这种恐惧的泛化会对心理造成伤害,并可能导致长期的精神疾病,如创伤后应激障碍(PTSD)。在没有威胁的情况下,我们的大脑会产生恐惧感,这种由压力引起的机制一直是个谜。现在,加利福尼亚大学圣迭戈分校的神经生物学家确定了导致这种普遍恐惧体验的大脑生化变化,并绘制了神经回路图。他们的研究发表在《科学》杂志上,为如何预防恐惧反应提供了新的见解。背侧剑突是位于脑干的一个区域,图像中绿色显示的是血清素能神经元,红色显示的是病毒表达的 TdTomato 蛋白,黄色显示的是共聚焦细胞。加州大学圣地亚哥分校斯皮策实验室。图片来源:加州大学圣地亚哥分校斯皮策实验室恐惧研究的突破在报告中,前加州大学圣地亚哥分校助理项目科学家李慧泉(现为 Neurocrine Biosciences 公司高级科学家)、生物科学学院阿特金森家族特聘教授尼克-斯皮策(Nick Spitzer)和他们的同事描述了他们发现神经递质使大脑神经元能够相互沟通的化学信使是压力诱发广泛恐惧的根源的研究过程。研究人员通过对小鼠大脑中一个被称为背侧剑突的区域(位于脑干)进行研究,发现急性压力会诱发神经元中化学信号的转换,从兴奋性的"谷氨酸"神经递质转换为抑制性的"GABA"神经递质,从而导致普遍的恐惧反应。针对普遍恐惧的见解和干预措施加州大学圣地亚哥分校神经生物学系和卡夫利脑与心智研究所成员斯皮策说:"我们的研究结果为了解恐惧泛化的相关机制提供了重要见解。从这一分子细节层面了解这些过程的好处是知道发生了什么以及发生在哪里可以针对驱动相关疾病的机制进行干预"。使用共聚焦显微镜拍摄的大脑背侧急流区图像。资料来源:加州大学圣地亚哥分校斯皮策实验室压力诱导神经递质的转换被认为是大脑可塑性的一种形式,在这一新发现的基础上,研究人员随后对患有创伤后应激障碍的人的死后大脑进行了检查。在他们的大脑中也证实了类似的谷氨酸-GABA 神经递质转换。研究人员接下来找到了一种阻止产生广泛恐惧的方法。在小鼠经历急性应激之前,他们给小鼠的背侧剑突注射了一种腺相关病毒(AAV),以抑制负责合成 GABA 的基因。这种方法阻止了小鼠获得广泛性恐惧。此外,当小鼠在应激事件发生后立即服用抗抑郁药氟西汀(百忧解)时,递质转换和随后出现的广泛性恐惧就会被阻止。研究人员不仅确定了切换发射器的神经元位置,还展示了这些神经元与中央杏仁核和外侧下丘脑的连接,而这些脑区以前与其他恐惧反应的产生有关。斯皮策说,"既然我们已经掌握了压力诱发恐惧的核心机制以及实施这种恐惧的电路,那么干预措施就可以有针对性和特异性。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

问世间情为何物,直教人生死相许

问世间情为何物,直教人生死相许 我和这位女士相识于2022年,她那时候在菲律宾,而我在柬埔寨,长达2年多的互联网陪伴,有曾拥有过暧昧的一段时间,幻想过恋爱也幻想过奔现,但每当我们想要开始尝试一下这段恋情的时候,总会出现那么一个【牲口】横空出世,让她怦然心动,然后和她啪啪啪,对此我也只能打碎了牙齿往肚子里咽,假装不在意,如同一个小丑般...装疯卖傻,或许这就是爱吧? 直至今年的11月,在我们相识中她和她的第四任男朋友来到了柬埔寨的波贝(我们认识期间的第4任) 我们重新取得了联系,我心想着就算当不了恋人,那就做最好的朋友吧,然后相约当她们来到西港后,我做东家给他们接风。 谁曾想到,不久之前,她和她的男朋友发生了争吵并且吵架分手了...............我的机会来了??? 谁料只不过是空欢喜一场 就在今天我问了她是不是一个人,她告诉了我,虽然分手的,但是住在一起。 现在打字的我早已经是泪流满面,大家请看VCaer 图上。 AV @Daacy 国产 @Qobri 吃瓜@Xocow求职 @Uozzo 表情包@iubas/.

封面图片

生物学家通过珊瑚追查海洋生物发光的古老起源

生物学家通过珊瑚追查海洋生物发光的古老起源 生物发光生物通过化学反应产生光的能力在自然界中已经独立进化了至少94次,并参与了包括伪装、求偶、交流和狩猎在内的大量行为。到目前为止,最早的动物生物发光起源被认为是在大约 2.67 亿年前,在被称为"介形纲"的小型海洋甲壳类动物身上。但是,对于这种能发光的特性,生物发光的起源却一直很模糊。2009 年在巴哈马群岛展示生物荧光的八射珊瑚 Isidella sp.图片来源:Sönke Johnsen博物馆的珊瑚馆馆长、该研究的资深作者 Andrea Quattrini 说:"没有人知道为什么动物中会首次出现这种进化。"但是,对于夸特里尼和主要作者、博物馆研究助理、前博士后丹尼尔-德里奥说,要最终解决生物发光进化的原因这个更大的问题,他们需要知道这种能力是什么时候首次出现在动物身上的。为了寻找这种特性的最早起源,研究人员决定回溯八射珊瑚的进化史。八射珊瑚是一种进化古老、经常发出生物光的动物,包括软珊瑚、海扇和海笔。与硬珊瑚一样,八射珊瑚也是一种微小的群体性珊瑚虫,它们分泌的框架成为它们的避难所,但与它们的石质亲戚不同的是,这种结构通常是柔软的。会发光的八射珊瑚通常只有在受到碰撞或其他干扰时才会发光,因此它们发光的确切功能还有点神秘。德里奥说:"我们想弄清生物发光的起源时间,而八射珊瑚是地球上已知会发出生物发光的最古老的动物群体之一。所以,问题是它们是什么时候发展出这种能力的?"无独有偶,夸特里尼和哈维-马德学院的凯瑟琳-麦克法登在2022 年完成了一棵极为详细、证据确凿的八射珊瑚进化树。夸特里尼和她的合作者利用来自185种八射珊瑚的遗传数据绘制了这幅进化关系图,即系统发生图。有了这棵以基因证据为基础的进化树,德里奥和 Quattrini 便根据两块已知年龄的八射珊瑚的物理特征,将它们放入进化树中。科学家们利用这些化石的年龄和它们各自在章鱼进化树中的位置,大致推算出了章鱼支系分裂成两个或多个分支的时间。接下来,研究小组绘制出了系统进化树中具有生物发光物种的分支。在确定了进化树的日期并标注了包含发光物种的分支之后,研究小组利用一系列统计技术进行了一项名为"祖先状态重建"的分析。Quattrini说:"如果我们知道今天生活的这些章鱼物种具有生物发光特性,我们就可以利用统计学推断出它们的祖先是否极有可能具有生物发光特性。具有共同特征的现存物种越多,随着时间的推移,这些祖先也可能具有这种特征的概率就越高。"研究人员在重建祖先状态时使用了许多不同的统计方法,但都得出了相同的结果:大约 5.4 亿年前,所有八射珊瑚的共同祖先很可能是生物发光体。这比之前被称为最早进化出生物荧光的发光甲壳动物早了 2.73 亿年。八射珊瑚有数千种生活代表,而且生物发光的发生率相对较高,这表明这种特性在八射珊瑚的进化成功中发挥了作用。研究人员说,虽然这进一步引出了八射珊瑚使用生物发光到底是为了什么的问题,但生物发光被保留了如此之久这一事实凸显了这种交流方式对于它们的适应和生存是多么重要。既然研究人员已经知道所有八射珊瑚的共同祖先很可能已经具备了自身发光的能力,那么他们就有兴趣更彻底地研究一下,在八射珊瑚类的 3000 多个现存物种中,哪些物种还能发光,哪些物种已经失去了这种特性。这将有助于找到与生物发光能力相关的一系列生态环境,并有可能阐明其功能。为此,德里奥说,她和她的一些合著者正在努力创造一种基因测试,以确定这些物种是否具有荧光素酶(一种参与生物发光的酶)基因的功能拷贝。对于光度未知的物种,这种测试将使研究人员能够更快、更容易地得到答案。除了揭示生物发光的起源,这项研究还提供了进化背景和见解,为今天监测和管理这些珊瑚提供了参考。珊瑚普遍受到气候变化和资源开采活动的威胁,尤其是捕鱼、石油和天然气开采和泄漏,以及最近的海洋矿物开采。这项研究为博物馆的海洋科学中心提供了支持,该中心旨在推动并与世界分享海洋知识。德里奥和Quattrini说,在科学家们弄清发光能力最初进化的原因之前,还有很多东西需要学习,尽管他们的研究结果将发光能力的起源置于进化时间的深处,但未来的研究仍有可能发现生物发光的历史更为久远。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

生物学家研制出光动力酵母菌 带来对进化、生物燃料和细胞衰老的新认识

生物学家研制出光动力酵母菌 带来对进化、生物燃料和细胞衰老的新认识 Anthony Burnett说:“坦率地说,我们对将酵母转化为光养生物(能够利用光能的生物)是多么简单感到震惊。我们所需要做的就是移动一个基因,它们在光照下的生长速度比在黑暗中快2%。没有任何微调或精心的哄骗,它就是有效的。”很容易地为酵母配备这样一个进化上重要的特征,可能对我们理解这种特征是如何起源的意义重大,以及如何将其用于研究生物燃料生产、进化和细胞老化等问题。寻找能量提升这项研究的灵感来自于该小组过去研究多细胞生命进化的工作。该小组去年在《自然》杂志上发表了他们的第一份关于多细胞长期进化实验(MuLTEE)的报告,揭示了他们的单细胞模式生物“雪花酵母”是如何在3000代的时间里进化出多细胞的。在这些进化实验中,出现了多细胞进化的一个主要限制:能量。“氧气很难扩散到组织深处,因此你得到的组织没有能力获得能量。”“我一直在寻找绕过这种基于氧的能量限制的方法。”在不使用氧气的情况下给生物体提供能量的一种方法是通过光。但是从进化的角度来看,将光转化为可用能量的能力是复杂的。例如,允许植物利用光作为能量的分子机制涉及许多基因和蛋白质,这些基因和蛋白质在实验室和自然进化中都很难合成和转移到其他生物体中。幸运的是,植物并不是唯一能将光转化为能量的生物。保持简单生物体利用光的一种更简单的方法是利用视紫红质:一种无需额外的细胞机制就能将光转化为能量的蛋白质。该研究的主要作者Autumn Peterson说:“视紫红质在生命之树上随处可见,显然是生物体在进化过程中相互获取基因而获得的。”这种类型的基因交换被称为水平基因转移,涉及在不密切相关的生物体之间共享遗传信息。水平基因转移可以在短时间内引起看似巨大的进化跳跃,比如细菌如何迅速对某些抗生素产生耐药性。这可能发生在所有的遗传信息中,特别是在视紫红质蛋白中。“在寻找将视紫红质转移到多细胞酵母中的方法的过程中,我们发现我们可以通过将其转移到常规的单细胞酵母中来了解过去在进化过程中发生的视紫红质水平转移。”为了观察他们是否能给单细胞生物配备太阳能视紫红质,研究人员将一种由寄生真菌合成的视紫红质基因添加到普通的面包酵母中。这种特殊的基因被编码为一种视紫红质,这种视紫红质会被插入细胞的液泡中,液泡是细胞的一部分,像线粒体一样,可以将视紫红质等蛋白质产生的化学梯度转化为能量。配备了空泡紫红质,酵母在光照下的生长速度大约快了2%这对进化来说是一个巨大的好处。“在这里,我们有一个单一的基因,我们只是把它跨环境拉到一个以前从未有过光养性的谱系中,它就这样工作了。”“这表明,这种系统真的很容易,至少有时,在一个新的有机体中发挥作用。”这种简单性提供了关键的进化见解,研究人员说明了“视紫红质能够轻易地在如此多的谱系中传播,以及为什么会这样”。由于空泡功能可能有助于细胞衰老,该小组也开始合作研究视紫红质如何能够减少酵母的衰老效应。其他研究人员已经开始使用类似的新型太阳能酵母来研究推进生物生产,这可能标志着生物燃料合成等方面的重大进步。然而,这一团队更热衷于探索这种额外的好处如何影响单细胞酵母向多细胞生物的转变。“我们有这个美丽的简单多细胞模型系统,”Burnett说,他指的是长期运行的多细胞长期进化实验(MuLTEE)。“我们想给它光营养,看看它是如何改变它的进化的。” ... PC版: 手机版:

封面图片

问世间情为何物,令大师为情所困......阿弥陀佛

封面图片

问世间 情是何物

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人