生物学家研制出光动力酵母菌 带来对进化、生物燃料和细胞衰老的新认识

生物学家研制出光动力酵母菌 带来对进化、生物燃料和细胞衰老的新认识 Anthony Burnett说:“坦率地说,我们对将酵母转化为光养生物(能够利用光能的生物)是多么简单感到震惊。我们所需要做的就是移动一个基因,它们在光照下的生长速度比在黑暗中快2%。没有任何微调或精心的哄骗,它就是有效的。”很容易地为酵母配备这样一个进化上重要的特征,可能对我们理解这种特征是如何起源的意义重大,以及如何将其用于研究生物燃料生产、进化和细胞老化等问题。寻找能量提升这项研究的灵感来自于该小组过去研究多细胞生命进化的工作。该小组去年在《自然》杂志上发表了他们的第一份关于多细胞长期进化实验(MuLTEE)的报告,揭示了他们的单细胞模式生物“雪花酵母”是如何在3000代的时间里进化出多细胞的。在这些进化实验中,出现了多细胞进化的一个主要限制:能量。“氧气很难扩散到组织深处,因此你得到的组织没有能力获得能量。”“我一直在寻找绕过这种基于氧的能量限制的方法。”在不使用氧气的情况下给生物体提供能量的一种方法是通过光。但是从进化的角度来看,将光转化为可用能量的能力是复杂的。例如,允许植物利用光作为能量的分子机制涉及许多基因和蛋白质,这些基因和蛋白质在实验室和自然进化中都很难合成和转移到其他生物体中。幸运的是,植物并不是唯一能将光转化为能量的生物。保持简单生物体利用光的一种更简单的方法是利用视紫红质:一种无需额外的细胞机制就能将光转化为能量的蛋白质。该研究的主要作者Autumn Peterson说:“视紫红质在生命之树上随处可见,显然是生物体在进化过程中相互获取基因而获得的。”这种类型的基因交换被称为水平基因转移,涉及在不密切相关的生物体之间共享遗传信息。水平基因转移可以在短时间内引起看似巨大的进化跳跃,比如细菌如何迅速对某些抗生素产生耐药性。这可能发生在所有的遗传信息中,特别是在视紫红质蛋白中。“在寻找将视紫红质转移到多细胞酵母中的方法的过程中,我们发现我们可以通过将其转移到常规的单细胞酵母中来了解过去在进化过程中发生的视紫红质水平转移。”为了观察他们是否能给单细胞生物配备太阳能视紫红质,研究人员将一种由寄生真菌合成的视紫红质基因添加到普通的面包酵母中。这种特殊的基因被编码为一种视紫红质,这种视紫红质会被插入细胞的液泡中,液泡是细胞的一部分,像线粒体一样,可以将视紫红质等蛋白质产生的化学梯度转化为能量。配备了空泡紫红质,酵母在光照下的生长速度大约快了2%这对进化来说是一个巨大的好处。“在这里,我们有一个单一的基因,我们只是把它跨环境拉到一个以前从未有过光养性的谱系中,它就这样工作了。”“这表明,这种系统真的很容易,至少有时,在一个新的有机体中发挥作用。”这种简单性提供了关键的进化见解,研究人员说明了“视紫红质能够轻易地在如此多的谱系中传播,以及为什么会这样”。由于空泡功能可能有助于细胞衰老,该小组也开始合作研究视紫红质如何能够减少酵母的衰老效应。其他研究人员已经开始使用类似的新型太阳能酵母来研究推进生物生产,这可能标志着生物燃料合成等方面的重大进步。然而,这一团队更热衷于探索这种额外的好处如何影响单细胞酵母向多细胞生物的转变。“我们有这个美丽的简单多细胞模型系统,”Burnett说,他指的是长期运行的多细胞长期进化实验(MuLTEE)。“我们想给它光营养,看看它是如何改变它的进化的。” ... PC版: 手机版:

相关推荐

封面图片

新研究所发现的模式推翻了酵母菌进化的传统观点

新研究所发现的模式推翻了酵母菌进化的传统观点 一项研究通过对 1000 多个菌株进行人工智能分析,揭示了酵母进化的新见解,挑战了旧范式,并为推进多个科学领域的研究提供了一个全面的数据集。酵母菌群(人工着色)。资料来源:夏洛特联合国大学拉贝拉于2022年以助理教授和研究员的身份加入夏洛特联合国大学计算机与信息学院的生物信息学系,在北卡罗来纳研究园区与共同第一作者、维拉诺瓦大学的Dana A. Opulente一起进行了这项研究。他们与来自范德比尔特大学和威斯康星大学麦迪逊分校的研究人员以及来自全球各地研究机构的同事进行了合作。这是 Y1000+项目拉贝拉在范德堡大学担任博士后研究员时加入了该项目,这是一项大规模的机构间酵母基因组测序和表型工作。"酵母是单细胞真菌,在我们的日常生活中发挥着至关重要的作用。它们被用来制造面包和啤酒,也用于医药生产,也会引起感染,作为动物的近亲,它们还可以帮助我们了解癌症是如何发生的,"拉贝拉说。"我们想知道这些小型真菌是如何进化到拥有如此多的功能和特征的。通过对一千多种酵母菌的特征描述,我们发现酵母菌并不符合'无所不能'的谚语。"这项研究有助于人们基本了解微生物如何随时间发生变化,同时产生了 900 多个新的酵母菌基因组序列,其中许多序列可用于生物真菌领域,如农业害虫控制、药物开发和生物燃料生产。拉贝拉和她的合著者通过对 Y1000+ 项目数据集(包括 1154 株古老的单细胞酵母 Saccaromycotina)进行人工智能辅助机器学习分析,试图回答一个重要问题。那就是为什么有些酵母菌只吃(或代谢)几种碳作为能量,而有些酵母菌却能吃十几种碳?阿比盖尔-莱维特-拉贝拉。资料来源:夏洛特联合国大学一种酵母用于获取能量的碳源总数在生态学上被称为其碳生态位广度(carbon niche-breadth)。人类的碳生态位广度也各不相同,例如,有些人可以代谢乳糖,而有些人则不能。进化生物学研究支持关于生态位广度的两个关键的总体范式,即解释为什么一些酵母生物("专科生物")在进化过程中只能代谢少量的碳作为燃料,而另一些酵母生物("通性酵母")在进化过程中能够消耗和生长多种碳形式的现象。值得注意的是,在后一种情况下,处理多种碳形式的能力是以牺牲酵母有效处理和生长每种碳形式的能力为代价的。第二种情况是,这些酵母专精和专精酵母在进化过程中,由于各自基因组的不同内在特征和酵母生物所处的不同环境的不同外在影响的共同作用,使得它们出现了各自的特征。拉贝拉和她的同事发现了大量证据,支持酵母专家与普通专家之间存在着可识别的内在基因差异,特别是普通专家往往比专家拥有更多的基因。例如,他们发现通性酵母菌更有可能合成肉碱,肉碱是一种参与能量生产的分子,经常作为运动补充剂出售。但出乎意料的是,他们的研究发现,在进化过程中,酵母处理多种形式碳的能力是以牺牲其高效处理碳和相应生长的能力为代"价的,反之亦然。拉贝拉说:"我们发现,能在大量碳基质上生长的酵母菌实际上生长得非常好。这是一个让我们非常惊讶的发现。这项具体实验的发现以及在分析中使用的创新机器学习机制可能会对生物信息学、生态学、代谢学和进化生物学产生重大影响,而这项研究的发表则意味着 Y1000+ 项目的大量酵母数据汇编现在可供全世界的学者用作起点,以扩展他们自己的酵母研究。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

量子磁感应:生物学家探寻鸟类导航的进化秘密

量子磁感应:生物学家探寻鸟类导航的进化秘密 黄腹纹霸鹟(Empidonax flaviventris)是一种小型食虫鸟,它不能产生隐花色素 4 蛋白。这种鸟在北美洲繁殖,冬季迁徙到墨西哥南部和中美洲。图片来源:Corinna Langebrake一项新的基因研究表明,鸟类眼睛中的隐花色素 4 蛋白是鸟类磁导航能力的关键,其进化变化凸显了它在适应不同环境中的作用。研究小组在最近发表于英国皇家学会研究期刊《英国皇家学会生物科学院院刊》(Proceedings of the Royal Society B Biological Sciences)上的一篇论文中报告说,这些发现表明隐花色素 4 能够适应不同的环境条件,并支持隐花色素 4 具有传感器蛋白功能的理论。奥尔登堡大学和牛津大学的研究表明,磁感应是基于候鸟视网膜上某些细胞中发生的复杂量子力学过程。这些研究成果于 2021 年发表在科学杂志《自然 》上,为隐花色素 4 就是他们一直在寻找的磁感受器这一假设提供了支持证据。他们证明了隐花色素 4 存在于鸟类的视网膜中。此外,用细菌生产的蛋白质进行的实验和模型计算都表明,隐花色素 4 在对磁场做出反应时表现出可疑的量子效应。之前的研究还发现,知更鸟等候鸟体内的隐花色素 4 对磁场的敏感性要高于鸡和鸽子等留鸟。"因此,隐花色素 4 在知更鸟身上比在鸡和鸽子身上更敏感的原因必须从该蛋白质的DNA序列中找到,"该研究的第一作者兰格布拉克说。"她补充说:"在这些夜间迁徙的鸟类中,该序列可能在进化过程中得到了优化。"在目前的研究中,研究小组首次从进化的角度研究了磁感应。研究人员分析了 363 种鸟类的隐花色素 4 基因。首先,他们比较了该蛋白质与两种相关隐花色素的进化速度,发现用于比较的隐花色素基因序列在所有鸟类物种中都非常相似。它们在进化过程中似乎变化很小。这很可能是由于它们在调节体内时钟方面起着关键作用这种机制对所有鸟类来说都是必不可少的,改变这种机制会产生极其不利的影响。与此相反,隐花色素 4 被证明具有高度可变性。奥尔登堡大学鸟类学教授、鸟类研究所所长利德沃格尔解释说:"这表明,这种蛋白质对于适应特定环境条件非常重要。由此产生的特殊化可能就是磁感应。在其他感官蛋白中也观察到了类似的模式,例如眼睛中的光敏色素。"研究人员随后仔细研究了隐花色素 4 的基因序列在鸟类进化史中的演变过程。他们的分析揭示了一个值得注意的趋势,尤其是在雀形目(Passeriformes)中,这种蛋白质通过快速选择经历了重大优化。研究结果表明,进化过程可能导致隐花色素4在鸣禽中专门用作磁感受器。研究发现,某些鸟类支系中不存在隐花色素 4,如鹦鹉、蜂鸟和霸鹟(Suboscines)。这表明隐花色素 4 在它们的生存中并不起重要作用。然而,鹦鹉和蜂鸟是定居型鸟类,而一些霸鹟鸟类则是长途迁徙型鸟类,它们与欧洲的小型鸣禽一样,白天和晚上都会飞行。这就提出了一个问题:霸鹟是否发展出了一种独立于隐花色素 4 之外的磁感,或者它们是否能够在没有磁感的情况下确定自己的方向?另一种可能是,它们的磁感与知更鸟的磁感具有相同的特性,后者依赖于光线,并且会被无线电波干扰。这位生物学家强调说:"前两种情况将有力地证实隐色4假说,而第三种情况则会给这一理论带来问题。"Liedvogel说:"霸鹟亚目为我们了解隐花色素4的功能和候鸟磁感应的重要性提供了一个天然的工具。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

生物学家通过珊瑚追查海洋生物发光的古老起源

生物学家通过珊瑚追查海洋生物发光的古老起源 生物发光生物通过化学反应产生光的能力在自然界中已经独立进化了至少94次,并参与了包括伪装、求偶、交流和狩猎在内的大量行为。到目前为止,最早的动物生物发光起源被认为是在大约 2.67 亿年前,在被称为"介形纲"的小型海洋甲壳类动物身上。但是,对于这种能发光的特性,生物发光的起源却一直很模糊。2009 年在巴哈马群岛展示生物荧光的八射珊瑚 Isidella sp.图片来源:Sönke Johnsen博物馆的珊瑚馆馆长、该研究的资深作者 Andrea Quattrini 说:"没有人知道为什么动物中会首次出现这种进化。"但是,对于夸特里尼和主要作者、博物馆研究助理、前博士后丹尼尔-德里奥说,要最终解决生物发光进化的原因这个更大的问题,他们需要知道这种能力是什么时候首次出现在动物身上的。为了寻找这种特性的最早起源,研究人员决定回溯八射珊瑚的进化史。八射珊瑚是一种进化古老、经常发出生物光的动物,包括软珊瑚、海扇和海笔。与硬珊瑚一样,八射珊瑚也是一种微小的群体性珊瑚虫,它们分泌的框架成为它们的避难所,但与它们的石质亲戚不同的是,这种结构通常是柔软的。会发光的八射珊瑚通常只有在受到碰撞或其他干扰时才会发光,因此它们发光的确切功能还有点神秘。德里奥说:"我们想弄清生物发光的起源时间,而八射珊瑚是地球上已知会发出生物发光的最古老的动物群体之一。所以,问题是它们是什么时候发展出这种能力的?"无独有偶,夸特里尼和哈维-马德学院的凯瑟琳-麦克法登在2022 年完成了一棵极为详细、证据确凿的八射珊瑚进化树。夸特里尼和她的合作者利用来自185种八射珊瑚的遗传数据绘制了这幅进化关系图,即系统发生图。有了这棵以基因证据为基础的进化树,德里奥和 Quattrini 便根据两块已知年龄的八射珊瑚的物理特征,将它们放入进化树中。科学家们利用这些化石的年龄和它们各自在章鱼进化树中的位置,大致推算出了章鱼支系分裂成两个或多个分支的时间。接下来,研究小组绘制出了系统进化树中具有生物发光物种的分支。在确定了进化树的日期并标注了包含发光物种的分支之后,研究小组利用一系列统计技术进行了一项名为"祖先状态重建"的分析。Quattrini说:"如果我们知道今天生活的这些章鱼物种具有生物发光特性,我们就可以利用统计学推断出它们的祖先是否极有可能具有生物发光特性。具有共同特征的现存物种越多,随着时间的推移,这些祖先也可能具有这种特征的概率就越高。"研究人员在重建祖先状态时使用了许多不同的统计方法,但都得出了相同的结果:大约 5.4 亿年前,所有八射珊瑚的共同祖先很可能是生物发光体。这比之前被称为最早进化出生物荧光的发光甲壳动物早了 2.73 亿年。八射珊瑚有数千种生活代表,而且生物发光的发生率相对较高,这表明这种特性在八射珊瑚的进化成功中发挥了作用。研究人员说,虽然这进一步引出了八射珊瑚使用生物发光到底是为了什么的问题,但生物发光被保留了如此之久这一事实凸显了这种交流方式对于它们的适应和生存是多么重要。既然研究人员已经知道所有八射珊瑚的共同祖先很可能已经具备了自身发光的能力,那么他们就有兴趣更彻底地研究一下,在八射珊瑚类的 3000 多个现存物种中,哪些物种还能发光,哪些物种已经失去了这种特性。这将有助于找到与生物发光能力相关的一系列生态环境,并有可能阐明其功能。为此,德里奥说,她和她的一些合著者正在努力创造一种基因测试,以确定这些物种是否具有荧光素酶(一种参与生物发光的酶)基因的功能拷贝。对于光度未知的物种,这种测试将使研究人员能够更快、更容易地得到答案。除了揭示生物发光的起源,这项研究还提供了进化背景和见解,为今天监测和管理这些珊瑚提供了参考。珊瑚普遍受到气候变化和资源开采活动的威胁,尤其是捕鱼、石油和天然气开采和泄漏,以及最近的海洋矿物开采。这项研究为博物馆的海洋科学中心提供了支持,该中心旨在推动并与世界分享海洋知识。德里奥和Quattrini说,在科学家们弄清发光能力最初进化的原因之前,还有很多东西需要学习,尽管他们的研究结果将发光能力的起源置于进化时间的深处,但未来的研究仍有可能发现生物发光的历史更为久远。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新研究发现细胞膜损伤会导致细胞衰老

新研究发现细胞膜损伤会导致细胞衰老 日本科研人员的一项新研究显示,细胞膜受损除了导致细胞的死亡或自我修复外还有第三种可能导致细胞衰老。 新华社报道,细胞膜是细胞的一层厚约五纳米的“防护外壳”,相当于肥皂泡厚度的二十分之一。这层薄膜易受机体活动损伤,也具有自我修复能力。一直以来,人们认为细胞在细胞膜受损后,要么修复要么死亡。 日本冲绳科学技术大学院大学的研究人员开发了一种诱导芽殖酵母细胞和人体成纤维细胞的细胞膜损伤的方法。通过全基因组测序筛选等检测,研究人员发现细胞膜损伤限制了芽殖酵母细胞的复制能力;在成纤维细胞中,细胞膜损伤会导致细胞过早衰老。 普通细胞的分裂能力是有限的大约分裂50次后就无法再继续,随后便进入细胞衰老状态。此外,在实验室环境中,脱氧核糖核酸(DNA)损伤、端粒缩短、致癌基因激活等因素也会诱发细胞衰老。长期以来,研究界一直认为细胞衰老其实都是通过激活DNA损伤反应来诱导的。 然而,研究人员在此次研究中发现,细胞膜损伤导致细胞衰老的机制并不通过常规的激活DNA损伤反应来诱导,而是独立于此的另外机制,且细胞膜损伤导致的细胞衰老过程比激活DNA损伤反应诱导的衰老过程慢。 近年的研究显示,清除动物和人体内的衰老细胞可以改善与年龄相关的疾病。研究人员认为,该研究结果有助于制定未来增进健康、延年益寿的策略。 这一研究成果发表在新一期英国《自然·老化》杂志上。 2024年2月27日 12:18 PM

封面图片

生物学家构建了迄今为止最全面的鸟类族谱图 时间横跨9300万年

生物学家构建了迄今为止最全面的鸟类族谱图 时间横跨9300万年 这些技术使研究人员能够高精度、高速度地分析大量基因组数据,为构建有史以来最全面的鸟类家谱奠定了基础。4月1日发表在《自然》(Nature)和《美国国家科学院院刊》(PNAS)上的两篇互补性论文详细介绍了这一进展。《自然》杂志报道的更新家系揭示了6600万年前恐龙灭绝后鸟类进化史的模式。发表在《自然》杂志上的最新鸟类家谱,勾勒出 363 种鸟类之间 9,300 万年的进化关系。图片来源:Jon Fjeldså(绘图)和 Josefin Stiller研究人员观察到,早期鸟类的有效种群数量、替代率和相对脑容量都急剧增加,这为我们揭示这一关键事件之后推动鸟类多样化的适应机制提供了新的线索。在发表于《美国国家科学院院刊》(PNAS)的相关论文中,研究人员仔细研究了新家谱的一个分支,发现火烈鸟和鸽子的亲缘关系比之前的全基因组分析所显示的更远。这项工作是由哥本哈根大学、浙江大学和加州大学圣地亚哥分校牵头的多机构合作项目"鸟类万基因组(B10K)项目"的一部分,该项目旨在为约10500种现存鸟类生成基因组序列草案。"我们的目标是重建所有鸟类的整个进化史,"加州大学圣地亚哥分校雅各布斯工程学院电子与计算机工程教授西亚瓦什-米拉拉布说,他是《自然》论文的共同资深作者,也是《美国科学院院报》论文的第一作者和共同通讯作者。这些研究的核心是一套名为"ASTRAL"的算法,米拉拉布实验室开发了这套算法,以前所未有的可扩展性、准确性和速度推断进化关系。通过利用这些算法的强大功能,研究小组整合了来自 6 万多个基因组区域的基因组数据,为他们的分析提供了强大的统计基础。研究人员随后研究了整个基因组中各个片段的进化历史。在此基础上,他们拼凑出了一棵马赛克基因树,然后将其编入一棵综合物种树。这种细致入微的方法使研究人员能够构建一个新的、经过改进的鸟类家系,即使在历史不确定的情况下,也能非常精确和详细地描述复杂的分支事件。米拉拉布说:"我们发现,我们在分析中加入数万个基因的方法实际上是解决鸟类物种之间进化关系的必要条件。需要所有这些基因组数据,才能以很高的置信度还原6500万-6700万年前的这段特定时期发生了什么"。在发表于《美国国家科学院院刊》(PNAS)上的这项研究中,研究人员仔细研究了更新的鸟类家谱中的一个分支,发现包括火烈鸟和鸽子在内的鸟类群体的亲缘关系比以前的全基因组分析所显示的要远,并将这一结果归因于第 4 号染色体上的一个不寻常区域。图片来源:Ed Braun(绘图)、Daniel J. Field(鸟类图片)和 Siavash Miarab该团队之所以能够在海量数据集上进行这些分析,是因为米拉拉布实验室设计的计算方法能够在功能强大的 GPU 机器上运行。他们在加州大学圣地亚哥分校圣地亚哥超级计算机的Expanse超级计算机上进行了计算。米拉拉布说:"我们很幸运能够使用如此高端的超级计算机。如果没有Expanse,我们就无法在合理的时间内对如此庞大的数据集进行运行和重新运行分析。"研究人员还研究了不同基因组取样方法对树的准确性的影响。他们发现,两种策略对每个物种的许多基因进行测序,以及对许多物种进行测序结合在一起,对重建这一进化史非常重要。哥本哈根大学生物学教授、《自然》论文第一作者约瑟芬-斯蒂勒(Josefin Stiller)说:"因为混合使用了这两种策略,所以我们可以测试哪种方法对系统发育重建的影响更大,从每种生物体中采样许多基因序列比从更广泛的物种中采样更重要,尽管后一种方法有助于我们确定不同群体进化的时间。"借助先进的计算方法,研究人员还揭示了他们在之前的一项研究中发现的不寻常之处:鸟类基因组中一条染色体的特定部分数百万年来一直保持不变,没有出现预期的基因重组模式。这一反常现象最初导致研究人员错误地把火烈鸟和鸽子归为进化上的表亲,因为根据这一段未变的DNA,它们似乎关系密切。这是因为他们之前的分析是基于48种鸟类的基因组。但通过使用363个物种的基因组重复分析,他们发现了一个更准确的家族树,它将鸽子与火烈鸟的关系进一步拉近。此外,通过使用由洛克菲勒大学神经生物学教授埃里希-贾维斯(Erich Jarvis)领导的脊椎动物基因组计划(Vertebrate Genome Project,VGP)提供的六个高质量基因组,米拉布及其同事能够发现并推测出这种令人惊讶的模式。佛罗里达大学生物学教授、《美国科学院院刊》(PNAS)论文共同通讯作者爱德华-布劳恩(Edward Braun)说:"令人惊讶的是,这段被抑制的重组时期可能会误导分析。正因为它可能会误导分析,所以在未来的6000多万年后,它实际上是可以被检测到的。这才是最酷的部分。"这项工作的影响远远超出了对鸟类进化史的研究。米拉拉布实验室首创的计算方法已成为重建其他各种动物进化树的标准工具之一。下一步,研究小组将继续努力构建鸟类进化的完整图景。生物学家们正在对更多鸟类物种的基因组进行测序,希望能将家谱扩展到数千个鸟属。与此同时,米拉拉布领导的计算科学家们正在改进他们的算法,以适应更大的数据集,确保在未来的研究中能够高速、准确地进行分析。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

约翰霍普金斯大学科学家解开夜盲症30年的生物学之谜

约翰霍普金斯大学科学家解开夜盲症30年的生物学之谜 5月14日发表在《美国国家科学院院刊》上的这一研究结果表明,名为G90D的视紫红质基因突变会产生一种不寻常的背景电"噪音",使眼睛的视杆细胞(即位于眼睛后部视网膜上负责夜间视力的细胞)脱敏,从而导致夜盲症,这种先天性疾病会导致弱光环境下的视力低下。该研究的作者写道,对异常电活动的识别可以"为未来的治疗干预提供目标"。约翰霍普金斯大学医学院神经科学系教授、博士 King-Wai Yau 说,这些电事件可以帮助科学家更好地了解眼睛的视杆细胞和视锥细胞是如何发挥作用的。这项研究由 Yau 和博士后研究员 Zuying Chai 领导。"众所周知,视紫红质中的G90D突变会产生背景电噪声,使杆状细胞脱敏,但这种'噪声'的性质及其精确的分子来源近30年来一直没有得到解决,"Yau说。"我们能够通过一种G90D rhodopsin表达水平非常低的小鼠模型来帮助解决这种疾病的机制问题。"在比较基因工程小鼠体内 G90D 的低表达水平和人类夜盲症患者体内 G90D 的表达水平时,作者得出结论,振幅低但频率极高的异常电活动可能是导致人类夜盲症的最大原因。除了不寻常的电噪声之外,人们还知道视紫红质会产生另一种叫做自发热异构化的电活动,即视紫红质分子内部的热能触发视紫红质随机激活。与观察到的异常电活动不同,G90D rhodopsin 的自发异构化表现出振幅高但频率低的特点。研究人员在实验中发现,G90D rhodopsin 的自发异构化率比正常 rhodopsin 高约两百倍,但它们的杆适配效应并不高,不足以在很大程度上导致人类的夜盲症。资料来源:King-Wai Yau 实验室在大多数情况下,视杆细胞对光线非常敏感,但对于夜盲症患者来说,视杆细胞无法准确探测光线的变化,在黑暗中也无法发挥作用。Yau 说,夜盲症患者需要更明亮的光线才能在弱光环境下看清东西。几十年来,尽管研究人员知道 G90D 基因突变,但他们一直难以确定它是如何导致夜盲症的,因为以前带有这种突变的小鼠模型会产生高水平的背景噪声,产生类似于背景光的效果,而小鼠的视杆细胞会很快适应这种背景光。这使得研究人员难以准确测量这种突变的信号效应。为了解决这个问题,约翰霍普金斯大学医学院的研究人员对小鼠进行了基因改造,使小鼠体内的 G90D 低表达,这一水平相当于小鼠自然群体中正常视紫红质表达量的 0.1%。这使研究人员能够区分 G90D 突变小鼠产生的不同类型的活动,就像几乎没有或根本没有等效的背景光存在一样。科学家们用一种高分辨率的方法记录了小鼠视网膜中单个视杆细胞的电活动,他们用一根超细玻璃吸管(宽度约为人头发丝的七十分之一)吸入了能够导电的生理盐水溶液。"实际上可以看到这些事件,"Yau 说。"我们使用了一种非常特殊的技术吸管记录技术,以如此高的分辨率记录活动,以至于如果一个视黄素分子发生异构化或激活,我们就能看到,因为这会导致电流发生变化。"G90D是与夜盲症有关的四种斜视蛋白突变之一。第一作者Chai说,下一步要做的是确定其他视黄素突变(T94I、A292E和A295V)是如何导致这种病症的。导致G90D夜盲症的机制可能与导致这种病症的其他三种视网膜视蛋白突变相似。编译来源:ScitechDailyDOI: 10.1073/pnas.2404763121 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人