该模型在基础能力评估中与 Meta-Llama3-70B 不相上下。支持 32K Token 的上下文长度。提供包括英语、中文、

该模型在基础能力评估中与 Meta-Llama3-70B 不相上下。支持 32K Token 的上下文长度。提供包括英语、中文、法语、西班牙语、日语、韩语、越南语等多种语言的多语言支持。 模型下载: 标签: #通义千问 #AI 频道: @GodlyNews1 投稿: @GodlyNewsBot

相关推荐

封面图片

通义千问开源千亿级参数模型

通义千问开源千亿级参数模型 通义千问开源1100亿参数模型Qwen1.5-110B,成为全系列首个千亿级参数开源模型。通义千问1100亿参数模型延续了Qwen1.5系列的Transformer解码器架构,采用了分组查询注意力方法(GQA),使得模型在推理时更加高效。110B模型支持32K上下文长度,具备优秀的多语言能力,支持中、英、法、德、西、俄、日、韩、越、阿拉伯等多种语言。 来源:雪球7X24资讯

封面图片

OpenAI的模型在评估眼疾方面几乎与医生不相上下

OpenAI的模型在评估眼疾方面几乎与医生不相上下 眼科一直是将人工智能应用于临床并解决其应用障碍的工作重点,例如模型通过虚构数据产生"幻觉"的倾向。"这项工作表明,这些大型语言模型在眼健康方面的知识和推理能力现在几乎与专家无异,"发表在《PLOS 数字健康》杂志上的一篇论文的主要作者 Arun Thirunavukarasu 说。他补充说:"我们看到了回答相当复杂问题的能力。研究使用了 87 种不同的病人情况来测试 GPT-4 在非专业初级医生、见习眼科医师和专家眼科医师中的表现。论文称,该模型的表现优于初级医生,并取得了与许多专家相似的结果。研究人员说,这项研究之所以引人注目,是因为它将人工智能模型的能力与执业医生的能力进行了比较,而不是与检查结果进行比较。它还运用了生成式人工智能的广泛能力,而不是之前一些人工智能医学研究中测试的狭窄能力,如通过病人扫描诊断癌症风险。该模型在需要一阶记忆的问题和需要高阶推理的问题(如插值、解释和处理信息的能力)上表现同样出色。Thirunavukarasu 在剑桥大学临床医学院学习期间开展了这项研究,他目前在牛津大学工作,他认为可以通过扩大数据集(包括管理算法、去身份化的病人笔记和教科书)对模型进行训练,从而进一步完善模型。这就要求在扩大信息来源的数量和性质的同时,确保信息保持良好的质量,在两者之间取得"棘手的平衡"。潜在的临床用途可能是对病人进行分流,或在专业医护人员有限的情况下使用。有证据表明,人工智能有助于诊断,例如能发现可能被医生遗漏的早期乳腺癌,因此在临床环境中部署人工智能的兴趣大增。与此同时,考虑到错误诊断可能对患者造成的伤害,研究人员也在努力解决如何控制严重风险的问题。伦敦大学学院人工医学智能教授皮尔斯-基恩(Pearse Keane)说,这项最新研究"令人兴奋",其利用人工智能为专家的表现设定基准的想法"超级有趣"。基恩也是伦敦莫菲尔德眼科医院的成员,他也认为,在将这些技术引入临床之前,还需要做更多的工作。他列举了自己去年研究中的一个例子:向一个大型语言模型询问有关眼部黄斑变性的问题,结果该模型在回答中给出了根本是"杜撰"出来的参考资料。"我们必须在对这项技术的兴奋和潜在的巨大利益之间取得平衡.....至少要有谨慎和怀疑。"他说。 ... PC版: 手机版:

封面图片

ℹGoogle 发布新一代语言模型 Gemini 1.5 ,可支援 100 万 token 上下文理解能力#

ℹGoogle 发布新一代语言模型 Gemini 1.5 ,可支援 100 万 token 上下文理解能力# Google 推出 Gemini 1.0 后一直在测试、完善和增强 Gemini 的能力,也终于在 2 月 15 日宣布推出新一代的 Ge...

封面图片

研究:OpenAI模型在评估眼疾方面几乎与医生不相上下

研究:OpenAI模型在评估眼疾方面几乎与医生不相上下 一项研究显示,OpenAI最新的人工智能模型在分析眼部状况方面几乎与专家医生不相上下。这项研究突显了该技术在医学领域的潜力。根据周三发表的一篇论文,GPT-4模型在评估眼部问题和建议治疗方面,超过或达到了除得分最高的专业医生之外所有人的得分。发表在《公共科学图书馆数字健康》杂志上的一篇论文的主要作者Arun Thirunavukarasu说:“这项工作表明,这些大型语言模型在眼睛健康方面的知识和推理能力现在几乎与专家无法区分。”Thirunavukarasu在剑桥大学临床医学院学习期间进行了这项研究,他表示:“我们现在正在以一种更加开放的方式进行训练,并发现这些模型几乎具备了它们没有被明确训练的能力。”伦敦大学学院(UCL)人工医学智能教授皮尔斯•基恩表示,这项最新研究“令人兴奋”,其利用人工智能对专家的表现进行基准测试的想法“超级有趣”。同时也隶属于伦敦摩尔菲尔德眼科医院的基恩认为,在将这项技术应用于临床之前,还需要做更多的工作。

封面图片

Meta发布全新大型语言模型LLaMA,加入硅谷AI竞赛

Meta发布全新大型语言模型LLaMA,加入硅谷AI竞赛 当地时间2月24日,Meta公司发布一款新的人工智能大型语言模型LLaMA,加入微软、谷歌等硅谷公司的竞赛。Meta首席执行官扎克伯格在Instagram表示,LLaMA模型旨在帮助研究人员推进工作,在生成文本、对话、总结书面材料、证明数学定理或预测蛋白质结构等更复杂的任务方面“有很大的前景”。Meta表示,在大多数基准测试中,参数仅为十分之一的LLaMA-13B的性能优于OpenAI推出的GPT3(175B),也即支持ChatGPT的GPT3.5的前身。 来源 , 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

128k上下文+多语言+工具:Cohere开放企业级应用大模型

128k上下文+多语言+工具:Cohere开放企业级应用大模型 Cohere推出Command R+模型,一个为应对企业级工作负载而构建的最强大、最具可扩展性的大型语言模型(LLM)。 - Command R+首先在Microsoft Azure上推出,旨在加速企业AI的采用。它加入了Cohere的R系列LLM,专注于在高效率和强准确性之间取得平衡,使企业能从概念验证走向生产。 - Command R+具有128k token的上下文窗口,旨在提供同类最佳的性能,包括: - 先进的检索增强生成(RAG)和引用,以减少幻觉 - 支持10种关键语言的多语言覆盖,以支持全球业务运营 - 工具使用,以实现复杂业务流程的自动化 - Command R+在各方面都优于Command R,在类似模型的基准测试中表现出色。 - 开发人员和企业可以从今天开始在Azure上访问Cohere的最新模型,很快也将在Oracle云基础设施(OCI)以及未来几周内的其他云平台上提供。Command R+也将立即在Cohere的托管API上提供。 - Atomicwork等企业客户可以利用Command R+来改善数字工作场所体验,加速企业生产力。 思考: - Cohere推出Command R+,进一步丰富了其企业级LLM产品线,展现了其在企业AI市场的雄心和实力。与微软Azure的合作有望加速其企业客户的拓展。 - Command R+在Command R的基础上进行了全面升级,128k token的上下文窗口、多语言支持、工具使用等特性使其能够胜任更加复杂多样的企业应用场景。这表明Cohere对企业需求有着深刻洞察。 - RAG和引用功能有助于提高模型输出的可靠性,减少幻觉,这对于企业级应用至关重要。可以看出Cohere在兼顾性能的同时,也非常重视模型的可控性。 - 与微软、甲骨文等云计算巨头合作,使Command R+能够在多个主流云平台上快速部署,降低了企业的采用门槛。这种开放的生态策略有利于加速其市场渗透。 - Atomicwork等企业客户的支持表明Command R+具有显著的商业价值。将LLM与企业数字化转型相结合,有望催生更多创新性的应用。 - Command R+的推出标志着Cohere在企业级AI市场的发力,其强大的性能和完善的生态有望帮助其在竞争中占据优势地位。不过,企业AI的落地仍面临数据安全、伦理合规等诸多挑战,Cohere还需要在这些方面持续投入。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人