世界上最强的杀毒剂,想不到是 TA

世界上最强的杀毒剂,想不到是 TA 紫外线是一种极其强大的消毒剂,一项又一项的研究证明,紫外线可以消灭病毒和细菌,但人们却很少想到紫外线可以用来抵御病菌。事实上,大多数人一提到紫外线,就会联想到会导致癌症的有害太阳光,这显然不是广告宣传所希望达到的效果。幸运的是,在大流行病封锁几年后,研究人员发现了一种紫外线,其强度不足以穿透人体皮肤,但仍能有效阻止病菌。它能成为我们的下一道防线吗?请观看这支视频,了解更多信息。 via 开眼精选 (author: Vox 视频精选) Invalid media: video

相关推荐

封面图片

蓝莓为什么是蓝色的?科学家们找到了原因

蓝莓为什么是蓝色的?科学家们找到了原因 蓝莓的蓝色是由环绕在果实周围的一层蜡构成的,这层蜡是由能散射蓝光和紫外线的微型结构组成的。这使得蓝莓在人类眼中呈现蓝色,在鸟类眼中呈现蓝色紫外线。蓝莓的蓝紫外线色反射是由随机排列的表皮蜡晶体结构与光线相互作用产生的。布里斯托尔生物科学学院研究员罗克斯-米德尔顿解释说:"蓝莓的蓝色无法通过挤压'提取'出来因为它不在可以从水果中挤出的色素汁液中。这就是为什么我们知道这种颜色一定有什么奇怪之处。因此,我们去掉了蜡,并将其重新结晶在一张卡片上,这样我们就能制造出一种全新的蓝色紫外线涂层。"这种超薄着色剂的厚度约为两微米,虽然反射率较低,但它具有明显的蓝色,并能很好地反射紫外线,这可能为新的着色剂方法铺平了道路。蜡结构如何反射光线的示意图。资料来源:Rox Middleton罗克斯补充说:"这表明,大自然在进化过程中使用了一种非常巧妙的技巧为一种重要的着色剂添加超薄层。"大多数植物都涂有一层薄薄的蜡,这层蜡具有多种功能,科学家们对其中的许多功能仍不了解。他们知道蜡作为疏水性自洁涂层非常有效,但直到现在他们才意识到蜡的结构对可见颜色有多么重要。现在,研究小组计划研究更简便的方法来再造和应用这种涂层。这样就能生产出更可持续、生物相容性更好,甚至可以食用的紫外线和蓝光反射涂料。此外,这些涂层还可以具有与保护植物的天然生物涂层相同的多重功能。罗克斯补充说:"在我们的眼皮底下,在我们经常种植和食用的水果上,发现了一种未知的着色机制,这真的很有趣。更令人兴奋的是,通过采集蜡制作出一种前所未见的新型蓝色涂层,从而再现了这种颜色。将这种天然蜡的所有功能融入到人工工程材料中是我们的梦想!"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

#皮肤黑的人更不易晒伤#】紫外线照射皮肤时,皮肤为了自我保护,黑色素细胞会生成大量的黑色素吸收紫外线。与皮肤白暂的人相比,肤色较

#皮肤黑的人更不易晒伤#】紫外线照射皮肤时,皮肤为了自我保护,黑色素细胞会生成大量的黑色素吸收紫外线。与皮肤白暂的人相比,肤色较深的人体内的黑色素细胞的黑色素颗粒更大、数量更多,能把有害的紫外线转化成无害的热量,防止皮肤晒伤。从这种角度来看,皮肤黑其实也是一种优势。 via 生命时报的微博

封面图片

新研究揭示紫外线如何降解冠状病毒

新研究揭示紫外线如何降解冠状病毒 南安普顿大学的一项研究发现,紫外线激光通过破坏 SARS-CoV-2 的遗传物质和蛋白质尖峰,有效地使其失活。这一发现加深了人们对基于光的病毒灭活的理解,为在传统方法不可行的环境中采用新型消毒方法铺平了道路。资料来源:南安普顿大学南安普顿大学的研究人员研究了紫外线激光如何通过影响这些关键成分来摧毁病毒。通过使用两种不同波长的专用紫外线激光,科学家们能够确定每种病毒成分在强光下是如何降解的。他们发现基因组材料对降解非常敏感,而蛋白质尖峰则失去了与人体细胞结合的能力。紫外线包括 UVA、UVB 和 UVC 光。从太阳照射到地球表面的频率低于 280 纳米的紫外线很少。南安普顿的研究小组在研究中使用的正是这种较少研究的紫外线,因为它具有消毒特性。紫外线会被不同的病毒成分强烈吸收,包括遗传物质(约 260 纳米)和蛋白质尖峰(约 230 纳米),因此研究小组选择了 266 纳米和 227 纳米的激光频率用于该项目。由苏梅特-马哈詹(Sumeet Mahajan)教授领导的南安普顿大学科学家与激光器制造商 M Squared Lasers 的科学家密切合作,共同撰写的研究报告发表在美国化学学会期刊《ACS Photonics》上。研究小组发现,266 纳米光在低功率下会造成RNA损伤,影响病毒的遗传信息。266 纳米光还破坏了 SARS-CoV-2 棘突蛋白的结构,通过分解二硫键和芳香族氨基酸降低了其与人体细胞结合的能力。227 纳米波长的光对 RNA 损伤的诱导作用较弱,但对通过氧化(一种涉及氧气的化学反应)破坏蛋白质的作用较强,因为氧化会使蛋白质结构解体。重要的是,SARS-CoV-2 是 RNA 病毒中基因组最大的病毒之一。这使它对基因组损伤特别敏感。马哈詹教授说:"光灭活空气传播的病毒为我们的公共场所和敏感设备的消毒提供了一种多功能工具,否则传统方法可能难以消除这些场所和设备的污染。现在我们了解了病毒中的分子成分对光灭活的不同敏感性,这为我们提供了精细调整消毒技术的可能性。"光基失活技术之所以受到广泛关注,是因为它的应用范围很广,而传统的液基失活方法并不适用。现在,人们对失活机理有了更深入的了解,这是推广该技术的重要一步。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

发射紫外线的玻璃可清除微生物膜造成的污损 解决一系列水下问题

发射紫外线的玻璃可清除微生物膜造成的污损 解决一系列水下问题 当任何物质在海水中放置足够长的时间后,细菌、真菌、藻类和其他海洋微生物就会在其表面形成一层黏糊糊的薄膜。藤壶等大型生物就会在这层薄膜上立足,并以此为家,不断生长繁殖。不用说,这种涂层会大大降低船体的流体动力,使船只在一定速度下行驶时耗费更多燃料。生物膜还对水下结构、防护网甚至海水淡化厂造成问题。这种现象被称为生物污损。防止这种现象的主要方法包括在水下表面涂上抗菌涂料(可能会对环境造成危害)或特殊的不粘材料(必须经常重新涂抹)。一种建议的替代方法是用外部紫外线照射表面,紫外线可以杀死微生物。但遗憾的是,紫外线离光源越远,效果就越差,而且浑浊的水也会吸收紫外线。这就是紫外线发光玻璃(UEG)的作用所在。它不是由单独的光源照射,而是光源。Leila Alidokht(左)和 Mariana Lanzarini-Lopes(右)与研究生研究助理 Athira Haridas(中)一起研究紫外线发射玻璃 马萨诸塞大学阿默斯特分校这种材料是由马萨诸塞大学阿默斯特分校工程师领导的科学家团队创造的,它由一个普通的玻璃载玻片组成,载玻片背面涂有一层二氧化硅纳米粒子和透明聚合物。紫外线发光二极管不会将光线投射到玻璃的正面或背面,而是投射到玻璃的一个边缘,当紫外线穿过玻璃的厚度时,它们会被纳米粒子散射和扩散,纳米粒子会反射紫外线,但不会吸收紫外线。因此,紫外线发光玻璃的整个正面(水侧)都能均匀地发出紫外线。在保持令人满意的可见光和红外线透射率的同时,其效果比以同样方式照射的未镀膜玻璃好 10 倍。在对该技术的测试中,UEG 幻灯片和未涂层的对照幻灯片被浸没在佛罗里达州卡纳维拉尔港的海水中长达 20 天。试验结束后发现,UEG 能将可见生物膜的生长减少 98%无生物膜 UEG 幻灯片与无涂层对照样品的比较科学家们现在计划用更大的玻璃片进行实验,这些玻璃片被浸没的时间将更长。该研究的第一作者、博士后助理研究员 Leila Alidokht 说:"所开发的技术可用于透明表面的消毒,如船舶窗户、浮球和系泊浮标、相机镜头以及海洋学、农业和水处理应用中的传感器。"有关这项研究的论文最近发表在《生物膜》杂志上。 ... PC版: 手机版:

封面图片

摄像头捕捉动物眼中的世界 准确率高达99%

摄像头捕捉动物眼中的世界 准确率高达99% 苏塞克斯大学(University of Sussex)和乔治梅森大学(George Mason University)汉利色彩实验室(Hanley Color Lab)的研究人员相信,这款软件将有广泛的用途。因此,他们将该软件开源,鼓励从自然纪录片制作人、生态学家到户外运动爱好者和观鸟者等所有人都来窥探这些动物截然不同的视觉现实。"资深作者丹尼尔-汉利(Daniel Hanley)说:"长期以来,我们一直对动物如何观察世界着迷。"感官生态学的现代技术让我们能够推断出静态场景在动物眼中的样子;然而,动物经常会对移动目标(探测食物、评估潜在配偶的表现等)做出关键决定。在这里,我们为生态学家和电影制作人介绍了能够捕捉和显示动物在运动中感知到的颜色的硬件和软件工具。相机系统对 (1) 紫外线和 (2) 可见光敏感,加上 (3) 模块化笼,以及 (4) 嵌入式(见箭头)定制支架内的放大镜。在这里,它安装在市售 (5) Novoflex BALPRO 波纹管系统上瓦萨斯等人/PLOS 生物学/(CC0 1.0)颜色、深度和其他视觉能力是由我们眼睛的感光器构成以及其他生物硬件(如锥体和视杆细胞)决定的。吸血蝙蝠和蚊子等动物可以感知红外线(IR),而蝴蝶和一些鸟类可以看到紫外线(UV)。这两种光都超出了人类所能看到的色谱范围。自然,这就使得人类很难完全理解动物的行为,以及我们可能如何在无意中影响它们交流、寻找食物、住所或配偶的能力。迄今为止,我们通过分光光度法等方法捕捉动物视觉的能力都非常耗时,依赖于特定的光照条件,而且无法记录动态图像。而这正是研究人员新研发成果的不同之处。研究人员利用多光谱摄影技术煞费苦心地设计了一种工具,可以捕捉不同波长的光线,包括红外线和紫外线。摄像机以蓝、绿、红、紫四种颜色通道记录视频,然后根据我们对特定动物眼睛感受器的了解,对视频进行处理,使其如同通过动物的眼睛拍摄的一样。视频记录可以准确估算出动物视觉光谱范围内的量子捕获量。在这种情况下,对于蜜蜂(左)和对紫外线敏感的鸟类(右)来说瓦萨斯等人/PLOS 生物学/(CC0 1.0)研究小组制作了一个便携式 3D 打印设备,该设备包含一个分光镜,可将紫外线与可见光分开,每种光线都由一个专用摄像头捕捉。紫外线感光相机本身并不能记录可感知的数据,但与另一个相机配对后,它们就能共同记录高质量的视频。算法将镜头对齐,以不同动物的视角呈现视觉效果。它的平均准确率为 92%,但有些测试的结果是 99%。硬件的设计适用于市面上的照相机,研究人员还将软件开源,希望其他人也能根据自己特定的野生动物拍摄需求进行调整。虽然它也有局限性不能捕捉偏振光,帧率有限,因此很难捕捉到速度快的生物但它提供了独特的见解,有助于我们进一步了解动物的行为,帮助我们减轻对自然世界的影响。研究小组用鸟类受体噪声限制(RNL)假色拍摄了一只Phoebis philea蝴蝶的博物馆标本。研究人员指出"该系统的另一个潜在用途是对博物馆标本进行快速数字化。这种蝴蝶具有色素和结构性紫外线色彩。明亮的品红色突出了主要反射紫外线的区域,而呈现紫色的区域则反射类似数量的紫外线和长波长光。将标本安装在支架上并缓慢旋转,可以展示虹彩颜色如何随观察角度的变化而变化。蜜蜂视觉中毛毛虫的反捕食展示。研究人员说:"隐藏和显露显示会给光谱学和标准多光谱摄影带来问题。在这里,我们展示了一段黑燕尾凤蝶毛虫展示其蜕皮器的视频。我们用蜜蜂假色来说明这段视频,紫外线、蓝色和绿色量子捕捉器分别显示为蓝色、绿色和红色。毛虫背部的黄色斑点和(人类的)黄色虹膜在紫外线下都有很强的反射,而当色彩转换成蜜蜂假色时,它们则呈现洋红色(因为蜜蜂的紫外线敏感光感受器和绿色敏感光感受器的强烈反应分别被描绘成蓝色和红色)。毛虫的许多捕食者都能感知紫外线,因此,这种着色可能是一种有效的启示信号"。蜜蜂在花朵上觅食和互动的Apis视觉。研究小组指出"摄像系统能够捕捉到自然发生的原始行为。三个短片分别描述了蜜蜂在自然环境中觅食(第一和第二个短片)和打斗(第三个短片)的情景。视频以蜜蜂假色显示(将蜜蜂的紫外线、蓝色和绿色感光器反应分别显示为蓝色、绿色和红色)。最后,通过四种不同动物的眼睛看到了五彩斑斓的孔雀羽毛。在这种情况下,孔雀的同类孔雀,加上人类、蜜蜂和狗。研究小组解释说:"照相系统可以测量与角度有关的结构色彩,例如虹彩。这里通过一段高度虹彩的孔雀(Pavo cristatus)羽毛视频来说明这一点。这段视频中的颜色代表(A)孔雀羽毛的假色,其中蓝色、绿色和红色量子捕获分别描绘为蓝色、绿色和红色,紫外线叠加为品红色。虽然与标准彩色视频大致相同,但在眼球的蓝绿色倒钩("眼斑")上可以看到紫外线虹彩(视频中大约 5 秒钟处有注释)。此外,还可以看到眼球周围(外侧两条绿色条纹之间)的紫外线虹彩。有趣的是,与(B)人类(标准色)、(C)蜜蜂或(D)狗相比,这种虹彩在孔雀身上更为明显。这项研究发表在《PLOS 生物学》杂志上。 ... PC版: 手机版:

封面图片

【#夏天我为什么推荐你选物理防晒#】#在王源手上看到了物理防晒的重要性# 你是怎样防晒的?有人坚持每天涂防晒霜,有人防晒衣遮阳帽

【#夏天我为什么推荐你选物理防晒#】#在王源手上看到了物理防晒的重要性# 你是怎样防晒的?有人坚持每天涂防晒霜,有人防晒衣遮阳帽“全副武装”,还有人上了“双保险”,涂抹加穿戴……夏天的紫外线穿透力极强,男女老少都要做好防晒,哪种防晒方式更遮紫外线? 不涂防晒霜,怎样防住紫外线?物理防晒真的有用 via 生命时报的微博

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人