美国之音行至太空深处,观测宇宙起源:美宇航局公布来自韦伯望远镜的首幅图片 ||

None

相关推荐

封面图片

美国之音来自宇宙深处:美宇航局公布韦伯太空望远镜拍摄的更多图像 ||

封面图片

韦伯太空望远镜改写了蟹状星云超新星的起源故事

韦伯太空望远镜改写了蟹状星云超新星的起源故事 美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(James Webb Space Telescope)剖析了蟹状星云的结构,为天文学家继续评估有关超新星残余物起源的主要理论提供了帮助。利用韦伯望远镜的近红外相机(NIRCam)和中红外成像仪(MIRI)收集到的数据,科学家小组得以仔细观察蟹状星云的一些主要组成部分。资料来源:美国国家航空航天局美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(James Webb Space Telescope)提供了蟹状体的新视图,包括迄今为止最高质量的红外数据,帮助科学家探索残余物的详细结构和化学成分。这些线索有助于揭开这颗恒星在大约1000年前爆炸的不寻常方式。天文学家有史以来第一次绘制出了这颗超新星残余物的暖尘埃发射图。尘粒以蓬松的洋红色物质为代表,形成了一个笼状结构,在残余物的左下方和右上方最为明显。尘埃细丝也遍布蟹状体内部,有时与绿色的双电离硫(III 号硫)区域重合。黄白色的斑驳细丝在超新星残余物中心周围形成大的环状结构,代表了尘埃和双电离硫重叠的区域。尘埃的笼状结构有助于限制一些幽灵般的同步辐射,但不是所有蓝色的同步辐射。这些发射就像一缕缕烟雾,在蟹状体中心最为明显。细细的蓝色丝带沿着蟹状体的脉冲星心脏一颗快速旋转的中子星产生的磁场线延伸。资料来源:NASA、ESA、CSA、STScI、Tea Temim(普林斯顿大学)一个科学家小组利用美国国家航空航天局的詹姆斯-韦伯太空望远镜解析了蟹状星云的成分,这是一个超新星残余物,位于大约6500光年外的金牛座。利用望远镜的中红外成像仪(MIRI)和近红外相机(NIRCam),研究小组收集到的数据有助于澄清蟹状星云的历史。蟹状星云是一颗大质量恒星死亡后发生的核心坍缩超新星的结果。超新星爆炸本身是在公元 1054 年在地球上看到的,当时的亮度足以在白天观测到。今天观测到的暗得多的残留物是一个不断膨胀的气体和尘埃外壳,以及由脉冲星驱动的外流风,脉冲星是一颗快速旋转和高度磁化的中子星。蟹状星云也非常不寻常。它的非典型成分和极低的爆炸能量以前曾被解释为电子捕获超新星一种罕见的爆炸类型,产生于内核由氧、氖和镁组成的进化程度较低的恒星,而不是更典型的铁内核。"现在,韦伯数据拓宽了可能的解释,"该研究的第一作者、新泽西州普林斯顿大学的 Tea Temim 说。"气体的组成不再需要电子捕获爆炸,也可以用弱铁核坍缩超新星来解释。"由韦伯望远镜的近红外波束和中红外成像仪拍摄的蟹状星云图像,并附有罗盘箭头、比例尺和参考色键。向北和向东的罗盘箭头表示图像在天空中的方位,相对于地面地图上的方向箭头(从上往下看),天空中的北方和东方之间的关系(从下往上看)是颠倒的。刻度条标注的单位是光年,即光在一个地球年中的传播距离。(光走过与光柱长度相等的距离需要 2 年)。一光年约等于 5.88 万亿英里或 9.46 万亿公里。本图中显示的视场直径约为 10 光年。这幅图像显示的是不可见的近红外和中红外光波长,这些波长已被转换成可见光的颜色。色键显示了 NIRCam 和 MIRI 观测到的成分,以及每个特征所对应的可见光颜色。资料来源:NASA、ESA、CSA、STScI、Tea Temim(普林斯顿大学)过去的研究工作是根据现今喷出物的数量和速度计算爆炸的总动能。天文学家推断,爆炸的性质是能量相对较低(不到普通超新星的十分之一),原恒星的质量在 8 到 10 个太阳质量之间在经历超新星剧烈死亡和不经历超新星剧烈死亡的恒星之间徘徊。然而,捕获超新星理论与蟹号的观测结果之间存在矛盾,特别是观测到的脉冲星的快速运动。近年来,天文学家对铁核坍缩超新星的认识也有了提高,现在他们认为,只要恒星质量足够低,这种类型的超新星也能产生低能爆炸。为了降低蟹状体祖星和爆炸性质的不确定性,Temim 领导的研究小组利用韦伯望远镜的光谱能力,对蟹状体内丝的两个区域进行了仔细观察。理论预测,由于电子捕获超新星内核的化学成分不同,镍/铁丰度比(Ni/Fe)应该远远高于在太阳中测得的比率(太阳中的这些元素来自前几代恒星)。20世纪80年代末和90年代初的研究利用光学和近红外数据测量了蟹体内的镍/铁比率,并注意到镍/铁丰度比率很高,似乎有利于电子捕获超新星的设想。韦伯望远镜具有灵敏的红外能力,目前正在推进蟹状星云的研究。研究小组利用 MIRI 的光谱能力测量了镍和铁的发射线,从而对镍/铁丰度比做出了更可靠的估计。他们发现,与太阳相比,镍/铁丰度比仍然偏高,但幅度不大,与之前的估计值相比要低得多。修订后的数值与电子捕获是一致的,但并不排除类似低质量恒星的铁核坍缩爆炸。(来自高质恒星的高能爆炸预计会产生更接近太阳丰度的比率)。要区分这两种可能性,还需要进一步的观测和理论工作。华盛顿海军研究实验室的马丁-拉明(Martin Laming)是这篇论文的合著者之一,他说:"目前,韦伯望远镜的光谱数据只覆盖了蟹状体的两个小区域,因此研究更多的残留物并确定任何空间变化非常重要。如果我们能识别出其他元素(如钴或锗)的发射线,那将会非常有趣"。除了从蟹状星云内部的两个小区域获取光谱数据以测量丰度比之外,这台望远镜还观测了残余物的大环境,以了解同步辐射和尘埃分布的细节。通过近红外成像仪收集的图像和数据,研究小组首次分离出蟹体内的尘埃辐射,并绘制出高分辨率的地图。通过利用韦伯望远镜绘制暖色尘埃发射图,甚至将其与赫歇尔空间天文台关于较冷尘埃颗粒的数据相结合,研究小组绘制出了一幅全面的尘埃分布图:最外层的细丝含有相对较暖的尘埃,而较冷的尘埃颗粒则普遍存在于中心附近。亚利桑那大学斯图尔特天文台的内森-史密斯(Nathan Smith)是这篇论文的合著者之一,他说:"在蟹状天体中看到尘埃的位置很有趣,因为它不同于其他超新星残骸,比如仙后座A和超新星1987A。在这些天体中,尘埃位于最中心。而在蟹状星云中,尘埃位于外壳的致密细丝中。蟹状星云符合天文学的传统:最近、最亮、研究得最好的天体往往是奇异的。"这些发现发表在《天体物理学杂志通讯》上。编译自/ScitechDaily ... PC版: 手机版:

封面图片

韦伯望远镜观测到3个宇宙早期星系的诞生借助詹姆斯·韦伯空间望远镜,丹麦哥本哈根大学等机构的研究人员观测到早期宇宙中3个古老星系诞

封面图片

哈勃太空望远镜通过观测Ia型超新星来测量宇宙距离

哈勃太空望远镜通过观测Ia型超新星来测量宇宙距离 哈勃太空望远镜通过观测 Ia 型超新星(如 NGC 3810 中的超新星)来帮助测量宇宙距离,利用它们一致的亮度来测量根据星系间尘埃效应调整后的距离。资料来源:欧空局/哈勃和美国国家航空航天局,D. Sand, R. J. Foley天体物理学的一项重要任务是测量星系、类星体和星系团等真正遥远天体的距离。在研究早期宇宙时尤其如此,但这是一项艰巨的任务。只有太阳、行星和一些邻近恒星等少数邻近天体,我们才能直接测量它们的距离。除此之外,我们还需要使用各种间接方法;其中最重要的一种方法就是研究 Ia 型超新星,而这正是NASA/ESA 哈勃太空望远镜的作用所在。NGC 3810,也就是这张照片中的星系,是 2022 年一颗 Ia 型超新星的宿主。2023 年初,哈勃聚焦于这个星系和其他一些星系,仔细研究最近的 Ia 型超新星。这种超新星是由白矮星爆炸产生的,它们的亮度都非常一致。这使得它们可以被用来测量距离:我们知道Ia型超新星应该有多亮,所以我们可以根据它的暗淡程度来判断它的距离有多远。这种方法的一个不确定因素是,地球和超新星之间的星际尘埃会阻挡部分光线。你怎么知道光的减少有多少是由距离造成的,有多少是由尘埃造成的?在哈勃的帮助下,我们找到了一个巧妙的解决方法:用紫外光和红外光拍摄同一 Ia 型超新星的图像,紫外光几乎完全被尘埃遮挡,而红外光则几乎不受影响地穿过尘埃。通过仔细观察每个波长有多少光穿过,就可以校准超新星亮度和距离之间的关系,从而考虑到尘埃的影响。这幅图像描绘的是螺旋星系 NGC 3810。2023 年,该星系被列入哈勃计划,以提高利用 Ia 型超新星进行距离测量的精确度。之所以能做到这一点,是因为 NGC 3810 中的一颗白矮星刚刚变成超新星,哈勃在超新星从视野中消失之前捕捉到了这幅图像。超新星以发现年份命名,后跟字母递增标签a、b,以此类推。如今,通过自动巡天,每年都会发现成千上万颗超新星,因此这颗超新星被命名为SN 2022zut,即2022年发现的第18000142颗超新星!图片来源:欧空局/哈勃和美国国家航空航天局,D. Sand, R. J. Foley哈勃可以用同一台仪器对这两种波长的光进行详细观测。这使它成为了这项实验的完美工具,事实上,用来制作 NGC 3810 这幅美丽图像的部分数据就集中在它的 2022 年超新星上。你可以看到它在银河核下方的一个光点,或者在上面的注释图像中看到它。测量宇宙距离的方法有很多;因为 Ia 型超新星非常明亮,所以当发现它们时,它们是最有用、最精确的工具之一。此外,还必须使用许多其他方法,要么作为对其他距离测量的独立检验,要么测量更近或更远的距离。其中一种方法也适用于星系,那就是将星系的旋转速度与亮度进行比较;根据这种方法,我们发现 NGC 3810 距地球 5000 万光年。编译自/ScitechDaily ... PC版: 手机版:

封面图片

韦伯太空望远镜拍下的指环星云。

封面图片

破纪录的银河系发现:韦伯太空望远镜一瞥宇宙曙光

破纪录的银河系发现:韦伯太空望远镜一瞥宇宙曙光 这张来自美国宇航局詹姆斯-韦伯太空望远镜(又称韦伯望远镜或 JWST)的红外图像是由 NIRCam(近红外相机)为 JWST 高级深河外星系巡天计划(或 JADES)拍摄的。NIRCam的数据被用来确定哪些星系需要通过光谱观测进行进一步研究。其中一个星系JADES-GS-z14-0(如图所示)被确定为红移14.32(+0.08/-0.20),是目前已知最遥远星系的记录保持者。这相当于宇宙大爆炸后不到3亿年的时间。资料来源:NASA、ESA、CSA、STScI、Brant Robertson(加州大学圣克鲁兹分校)、Ben Johnson(CfA)、Sandro Tacchella(剑桥大学)、Phill Cargile(CfA)在过去的两年里,科学家们利用美国宇航局的詹姆斯-韦伯太空望远镜(又称韦伯望远镜或 JWST)探索了天文学家所说的宇宙黎明期宇宙大爆炸后最初几亿年的时期,在这一时期诞生了第一批星系。这些星系提供了重要的洞察力,让我们了解宇宙在非常年轻的时候,气体、恒星和黑洞是如何变化的。2023 年 10 月和 2024 年 1 月,一个国际天文学家小组利用韦伯望远镜观测星系,这是 JWST 高级深河外星系巡天(JADES)计划的一部分。利用韦伯望远镜的近红外摄谱仪(NIRSpec),他们获得了大爆炸后仅 2.9 亿年就观测到的一个创纪录星系的光谱。这相当于约 14 的红移,红移是衡量星系的光线被宇宙膨胀拉伸的程度的一个指标。我们邀请了意大利比萨高等师范学院的斯特凡诺-卡尼亚尼(Stefano Carniani)和亚利桑那州图森市亚利桑那大学的凯文-海因莱恩(Kevin Hainline)为我们详细介绍这个源是如何被发现的,以及它的独特性质对星系形成的启示:科学家们利用美国宇航局詹姆斯-韦伯太空望远镜的近红外摄谱仪(NIRSpec)获取了遥远星系JADES-GS-z14-0的光谱,以精确测量其红移,从而确定其年龄。红移可以通过一个被称为莱曼-阿尔法断裂的临界波长的位置来确定。这个星系的历史可以追溯到宇宙大爆炸后不到3亿年。资料来源:NASA、ESA、CSA、Joseph Olmsted(STScI)、S. Carniani(Scuola Normale Superiore)、JADES Collaboration高红移星系研究取得突破性进展"韦伯望远镜上的仪器旨在发现和了解最早的星系,在作为 JWST 高级深河外星系巡天(JADES)一部分的第一年观测中,我们发现了大爆炸后最初 6.5 亿年的数百个候选星系。2023年初,我们在数据中发现了一个星系,它有强有力的证据表明它的红移超过了14,这让我们非常兴奋,但是这个星系源的一些特性让我们很警惕。这个光源的亮度出乎我们的意料,这对于一个如此遥远的星系来说是不可能的,而且它距离另一个星系非常近,这两个星系似乎是一个更大天体的一部分。当我们在2023年10月作为JADES起源场的一部分再次观测这个源时,用韦伯更窄的NIRCam(近红外相机)滤镜获得的新成像数据更加指向高红移假说。我们知道我们需要一个光谱,因为无论我们了解到什么,都将具有巨大的科学意义,无论是作为韦伯研究早期宇宙的一个新的里程碑,还是作为一个中年星系的一个令人困惑的怪胎。2024年1月,NIRSpec对这个名为JADES-GS-z14-0的星系进行了近10个小时的观测,当首次处理光谱时,有明确的证据表明这个星系的红移确实达到了14.32,打破了之前最远星系的记录(JADES-GS-z13-0的z=13.2)。鉴于这个星系源的神秘性,看到这个光谱让整个团队都感到无比兴奋。对于我们的团队来说,这个发现不仅仅是一个新的距离记录;JADES-GS-z14-0最重要的一点是,在这个距离上,我们知道这个星系本质上一定非常明亮。从图像上看,这个光源的直径超过了1600光年,证明我们看到的光主要来自年轻恒星,而不是来自一个不断增长的超大质量黑洞附近的发射。这么多的星光意味着这个星系的质量是太阳的几亿倍!这就提出了一个问题:大自然是如何在不到3亿年的时间里创造出如此明亮、巨大和庞大的星系的呢?"揭开古老之光的新启示这些数据揭示了这个惊人星系的其他重要方面。我们看到这个星系的颜色并不像想象中那么蓝,这表明即使在非常早期的时候,一些光线也被尘埃染红了。来自 Steward 天文台和亚利桑那大学的 JADES 研究员 Jake Helton 还发现,JADES-GS-z14-0 被韦伯的中红外仪器(MIRI)以更长的波长探测到,考虑到它的距离,这是一项了不起的成就。中红外成像仪的观测覆盖了可见光范围内发射的光波长,而韦伯望远镜的近红外仪器对这些波长进行了红移。杰克的分析表明,近红外成像观测所暗示的源亮度高于其他韦伯仪器的测量值,这表明该星系中存在强烈的电离气体发射,其形式为氢和氧的明亮发射线。在这个星系生命的早期就存在氧气是一个令人惊讶的现象,这表明在我们观测到这个星系之前,多代大质量恒星已经开始了它们的生命。所有这些观测结果都告诉我们,JADES-GS-z14-0 并不像理论模型和计算机模拟所预测的那种存在于宇宙早期的星系。根据观测到的星系源亮度,我们可以预测它随着宇宙时间的推移可能会如何增长,而到目前为止,我们还没有从我们在巡天观测中观测到的其他数百个高红移星系中找到任何合适的类似物。鉴于搜索发现 JADES-GS-z14-0 的天空区域相对较小,它的发现对我们在早期宇宙中看到的明亮星系的预测数量有着深远的影响。天文学家很可能会在未来的十年中利用韦伯望远镜发现许多这样的明亮星系,甚至可能是更早的星系。我们很高兴能看到宇宙黎明时存在的星系的非凡多样性。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人