韦伯太空望远镜改写了蟹状星云超新星的起源故事

韦伯太空望远镜改写了蟹状星云超新星的起源故事 美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(James Webb Space Telescope)剖析了蟹状星云的结构,为天文学家继续评估有关超新星残余物起源的主要理论提供了帮助。利用韦伯望远镜的近红外相机(NIRCam)和中红外成像仪(MIRI)收集到的数据,科学家小组得以仔细观察蟹状星云的一些主要组成部分。资料来源:美国国家航空航天局美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(James Webb Space Telescope)提供了蟹状体的新视图,包括迄今为止最高质量的红外数据,帮助科学家探索残余物的详细结构和化学成分。这些线索有助于揭开这颗恒星在大约1000年前爆炸的不寻常方式。天文学家有史以来第一次绘制出了这颗超新星残余物的暖尘埃发射图。尘粒以蓬松的洋红色物质为代表,形成了一个笼状结构,在残余物的左下方和右上方最为明显。尘埃细丝也遍布蟹状体内部,有时与绿色的双电离硫(III 号硫)区域重合。黄白色的斑驳细丝在超新星残余物中心周围形成大的环状结构,代表了尘埃和双电离硫重叠的区域。尘埃的笼状结构有助于限制一些幽灵般的同步辐射,但不是所有蓝色的同步辐射。这些发射就像一缕缕烟雾,在蟹状体中心最为明显。细细的蓝色丝带沿着蟹状体的脉冲星心脏一颗快速旋转的中子星产生的磁场线延伸。资料来源:NASA、ESA、CSA、STScI、Tea Temim(普林斯顿大学)一个科学家小组利用美国国家航空航天局的詹姆斯-韦伯太空望远镜解析了蟹状星云的成分,这是一个超新星残余物,位于大约6500光年外的金牛座。利用望远镜的中红外成像仪(MIRI)和近红外相机(NIRCam),研究小组收集到的数据有助于澄清蟹状星云的历史。蟹状星云是一颗大质量恒星死亡后发生的核心坍缩超新星的结果。超新星爆炸本身是在公元 1054 年在地球上看到的,当时的亮度足以在白天观测到。今天观测到的暗得多的残留物是一个不断膨胀的气体和尘埃外壳,以及由脉冲星驱动的外流风,脉冲星是一颗快速旋转和高度磁化的中子星。蟹状星云也非常不寻常。它的非典型成分和极低的爆炸能量以前曾被解释为电子捕获超新星一种罕见的爆炸类型,产生于内核由氧、氖和镁组成的进化程度较低的恒星,而不是更典型的铁内核。"现在,韦伯数据拓宽了可能的解释,"该研究的第一作者、新泽西州普林斯顿大学的 Tea Temim 说。"气体的组成不再需要电子捕获爆炸,也可以用弱铁核坍缩超新星来解释。"由韦伯望远镜的近红外波束和中红外成像仪拍摄的蟹状星云图像,并附有罗盘箭头、比例尺和参考色键。向北和向东的罗盘箭头表示图像在天空中的方位,相对于地面地图上的方向箭头(从上往下看),天空中的北方和东方之间的关系(从下往上看)是颠倒的。刻度条标注的单位是光年,即光在一个地球年中的传播距离。(光走过与光柱长度相等的距离需要 2 年)。一光年约等于 5.88 万亿英里或 9.46 万亿公里。本图中显示的视场直径约为 10 光年。这幅图像显示的是不可见的近红外和中红外光波长,这些波长已被转换成可见光的颜色。色键显示了 NIRCam 和 MIRI 观测到的成分,以及每个特征所对应的可见光颜色。资料来源:NASA、ESA、CSA、STScI、Tea Temim(普林斯顿大学)过去的研究工作是根据现今喷出物的数量和速度计算爆炸的总动能。天文学家推断,爆炸的性质是能量相对较低(不到普通超新星的十分之一),原恒星的质量在 8 到 10 个太阳质量之间在经历超新星剧烈死亡和不经历超新星剧烈死亡的恒星之间徘徊。然而,捕获超新星理论与蟹号的观测结果之间存在矛盾,特别是观测到的脉冲星的快速运动。近年来,天文学家对铁核坍缩超新星的认识也有了提高,现在他们认为,只要恒星质量足够低,这种类型的超新星也能产生低能爆炸。为了降低蟹状体祖星和爆炸性质的不确定性,Temim 领导的研究小组利用韦伯望远镜的光谱能力,对蟹状体内丝的两个区域进行了仔细观察。理论预测,由于电子捕获超新星内核的化学成分不同,镍/铁丰度比(Ni/Fe)应该远远高于在太阳中测得的比率(太阳中的这些元素来自前几代恒星)。20世纪80年代末和90年代初的研究利用光学和近红外数据测量了蟹体内的镍/铁比率,并注意到镍/铁丰度比率很高,似乎有利于电子捕获超新星的设想。韦伯望远镜具有灵敏的红外能力,目前正在推进蟹状星云的研究。研究小组利用 MIRI 的光谱能力测量了镍和铁的发射线,从而对镍/铁丰度比做出了更可靠的估计。他们发现,与太阳相比,镍/铁丰度比仍然偏高,但幅度不大,与之前的估计值相比要低得多。修订后的数值与电子捕获是一致的,但并不排除类似低质量恒星的铁核坍缩爆炸。(来自高质恒星的高能爆炸预计会产生更接近太阳丰度的比率)。要区分这两种可能性,还需要进一步的观测和理论工作。华盛顿海军研究实验室的马丁-拉明(Martin Laming)是这篇论文的合著者之一,他说:"目前,韦伯望远镜的光谱数据只覆盖了蟹状体的两个小区域,因此研究更多的残留物并确定任何空间变化非常重要。如果我们能识别出其他元素(如钴或锗)的发射线,那将会非常有趣"。除了从蟹状星云内部的两个小区域获取光谱数据以测量丰度比之外,这台望远镜还观测了残余物的大环境,以了解同步辐射和尘埃分布的细节。通过近红外成像仪收集的图像和数据,研究小组首次分离出蟹体内的尘埃辐射,并绘制出高分辨率的地图。通过利用韦伯望远镜绘制暖色尘埃发射图,甚至将其与赫歇尔空间天文台关于较冷尘埃颗粒的数据相结合,研究小组绘制出了一幅全面的尘埃分布图:最外层的细丝含有相对较暖的尘埃,而较冷的尘埃颗粒则普遍存在于中心附近。亚利桑那大学斯图尔特天文台的内森-史密斯(Nathan Smith)是这篇论文的合著者之一,他说:"在蟹状天体中看到尘埃的位置很有趣,因为它不同于其他超新星残骸,比如仙后座A和超新星1987A。在这些天体中,尘埃位于最中心。而在蟹状星云中,尘埃位于外壳的致密细丝中。蟹状星云符合天文学的传统:最近、最亮、研究得最好的天体往往是奇异的。"这些发现发表在《天体物理学杂志通讯》上。编译自/ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

韦伯太空望远镜揭示标志性马头星云的隐藏层次

韦伯太空望远镜揭示标志性马头星云的隐藏层次 这张来自美国宇航局詹姆斯-韦伯太空望远镜的马头星云图像聚焦在马的"鬃毛"部分,宽度约为 0.8 光年。这是用韦伯的近红外相机(NIRCam)拍摄的。图像底部呈现蓝色的空灵云层充满了各种物质,包括氢、甲烷和水冰。延伸到主星云上方的红色缕状物代表原子氢和分子氢。在这个被称为光解离区的区域中,来自附近年轻大质量恒星的紫外线在上方完全电离的气体和下方星云之间形成了一个由气体和尘埃组成的中性温暖区域。与许多韦伯图像一样,遥远的星系散布在背景中。这张图像由波长为 1.4 和 2.5 微米(蓝色)、3.0 和 3.23 微米(青色)、3.35 微米(绿色)、4.3 微米(黄色)以及 4.7 和 4.05 微米(红色)的光组成。资料来源:NASA、ESA、CSA、Karl Misselt(亚利桑那大学)、Alain Abergel(法国国家科学研究中心 IAS)韦伯的观测将使天文学家能够研究星云中的尘埃是如何阻挡和发射光线的,并更好地了解星云的形状。这张图片展示了我们天空中最独特的天体之一马头星云的三个视角。第一张图片(左)于 2023 年 11 月发布,展示了欧空局欧几里得望远镜在可见光下看到的马头星云。第二张图片(中)是美国国家航空航天局哈勃太空望远镜拍摄的马头星云的近红外照片,这张图片曾在 2013 年作为哈勃太空望远镜 23 周年纪念图片展出。这张图片揭示了通常被尘埃遮挡的美丽而精致的结构。第三张图片(右)是美国宇航局詹姆斯-韦伯太空望远镜的近红外相机(NIRCam)仪器拍摄的马头星云的新景象。资料来源:NASA、ESA、CSA、Karl Misselt(亚利桑那大学)、Alain Abergel(IAS、CNRS)、Mahdi Zamani 欧几里得联盟、哈勃遗产项目(STScI、AURA)美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(James Webb Space Telescope)拍摄到了我们天空中最独特的天体之一马头星云(Horsehead Nebula)放大部分迄今为止最清晰的红外图像。这些观测数据以全新的视角展示了这个标志性星云的"马鬃"顶部或边缘,以前所未有的空间分辨率捕捉到了该区域的复杂性。韦伯的新图像显示了猎户座的部分天空,位于一个被称为猎户座 B 分子云的密集区域的西侧。从尘埃和气体的湍流中升起的是马头星云,又名巴纳德 33,位于大约 1300 光年之外。星云由坍塌的星际物质云形成,由于受到附近一颗炙热恒星的照耀而发光,周围的气体云已经消散,但突出的星柱是由厚厚的物质团块组成的,因此更难被侵蚀。天文学家估计,"马头"在解体之前还有大约 500 万年的时间。韦伯的新视图聚焦于星云顶部独特的尘埃和气体结构的照明边缘。马头星云是一个著名的光解离区(PDR)。在这样的区域中,来自年轻大质量恒星的紫外线(UV)在大质量恒星周围完全电离的气体和恒星诞生的云层之间形成了一个大部分为中性、温暖的气体和尘埃区域。这种紫外线辐射强烈地影响着这些区域的化学性质,并成为一个重要的热源。这张来自美国宇航局詹姆斯-韦伯太空望远镜的马头星云图像聚焦于马的部分"鬃毛"。这是用韦伯的中红外仪器(MIRI)拍摄的。中红外光可以捕捉到灰尘硅酸盐和称为多环芳烃的烟灰状分子等物质的光芒。资料来源:NASA、ESA、CSA、Karl Misselt(亚利桑那大学)、Alain Abergel(法国国家科学研究中心 IAS)这些区域的星际气体密度足以保持大部分中性,但密度不足以阻止大质量恒星紫外线的穿透。这种 PDR 发出的光为研究物理和化学过程提供了一个独特的工具,这些物理和化学过程推动了银河系星际物质的演化,也推动了从恒星形成的早期到现在的整个宇宙的演化。由于马头星云距离很近,而且其几何形状几乎处于边缘位置,因此是天文学家研究PDR的物理结构、其各自环境中气体和尘埃的分子演化以及它们之间过渡区域的理想目标。它被认为是天空中研究辐射如何与星际物质相互作用的最佳区域之一。借助韦伯望远镜的近红外成像(MIRI)和近红外成像(NIRCam)仪器,一个国际天文学家小组首次揭示了马头星受光边缘的小尺度结构。当紫外线蒸发尘埃云时,尘埃粒子被加热的气体带离尘埃云。韦伯探测到了追踪这一运动的细小特征网络。通过观测,天文学家还研究了尘埃是如何阻挡和发射光线的,并更好地了解了星云的多维形状。接下来,天文学家打算研究已经获得的光谱数据,以深入了解整个星云中观测到的物质的物理和化学特性的演变。这些观测是为韦伯 GTO 1192 计划进行的,观测结果于 4 月 29 日发表在《天文学与天体物理学》(Astronomy & Astrophysics)杂志上。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

韦伯望远镜让早期宇宙中的已发现超新星数量增加10倍

韦伯望远镜让早期宇宙中的已发现超新星数量增加10倍 韦伯望远镜非常适合用来识别极其遥远的超新星,因为存在一种叫做宇宙学红移的现象,在这种现象中,穿越宇宙的光线会被拉伸到更长的波长。来自远古超新星的可见光被拉伸得如此之长,以至于最终出现在红外线中。韦伯望远镜的仪器可以看到红外光,因此非常适合寻找这些遥远的超新星。一个研究小组利用韦伯早期宇宙深度探测的数据,发现了比以前已知的多 10 倍的远古超新星。这项研究是利用韦伯望远镜对远古超新星进行更广泛探测的第一步。JADES 深度场使用的是 NASA 詹姆斯-韦伯太空望远镜(JWST)的观测数据,这是 JADES(JWST 高级河外星系深度巡天)计划的一部分。一个研究 JADES 数据的天文学家小组发现了大约 80 个亮度随时间变化的天体(绿色圈内)。这些被称为瞬变天体的天体大多是恒星或超新星爆炸的结果。资料来源:NASA、ESA、CSA、STScI、JADES 合作组织美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜(James Webb Space Telescope)深入窥探宇宙,为科学家们首次提供了宇宙早期超新星的详细资料。一个使用韦伯数据的研究小组发现,早期宇宙中的超新星比之前已知的多 10 倍。其中一些新发现的爆炸恒星是同类恒星中最遥远的例子,包括那些用来测量宇宙膨胀率的恒星。"韦伯望远镜是一台发现超新星的机器,"图森市亚利桑那大学斯图尔特天文台的三年级研究生克里斯塔-德库西(Christa DeCoursey)说。"探测到的超新星数量之多,加上这些超新星的距离之远,是我们巡天观测中最令人兴奋的两项成果"。德库西在威斯康星州麦迪逊举行的美国天文学会第244次会议的新闻发布会上介绍了这些发现。资料来源:NASA、ESA、CSA、Ann Feild(STScI)为了取得这些发现,研究小组分析了作为 JWST 高级深河外星系巡天(JADES)计划一部分而获得的成像数据。韦伯望远镜非常适合寻找极其遥远的超新星,因为它们的光线会被拉伸到更长的波长这种现象被称为宇宙学红移。(见上图)。在韦伯望远镜发射之前,只有少数超新星的红移超过2,这相当于宇宙的年龄只有33亿年仅为目前年龄的25%。JADES样本包含了许多在更久远的过去爆炸的超新星,当时宇宙的年龄还不到20亿年。以前,研究人员利用美国宇航局的哈勃太空望远镜观测宇宙处于"青年期"时的超新星。通过 JADES,科学家们看到了宇宙处于"十几岁"或"前十几岁"时的超新星。未来,他们希望能够回望宇宙的"幼儿"或"婴儿"阶段。为了发现这些超新星,研究小组比较了相隔一年的多幅图像,寻找在这些图像中消失或出现的光源。这些观测亮度随时间变化的天体被称为瞬变体,而超新星就是瞬变体的一种。总之,JADES 瞬变巡天样本小组在一片只有米粒粗细的天空中发现了大约 80 个超新星。这张马赛克照片展示了从 JADES(JWST 高级深河外星系巡天)计划的数据中发现的约 80 个瞬变天体(即亮度不断变化的天体)中的三个。大多数瞬变体都是恒星或超新星爆炸的结果。通过对比 2022 年和 2023 年拍摄的图像,天文学家可以找到从我们的视角来看最近才爆炸的超新星(如前两列所示的例子),或者已经爆炸但其光线正在逐渐消失的超新星(第三列)。每颗超新星的年龄都可以通过它的红移(用"z"表示)来确定。最遥远的超新星的红移为 3.8,它的光起源于宇宙只有 17 亿年的时候。红移 2.845 相当于宇宙大爆炸后 23 亿年。最接近的例子红移为 0.655,显示的是大约 60 亿年前离开其星系的光线,当时宇宙的年龄刚刚超过现在的一半。资料来源:NASA、ESA、CSA、STScI、Christa DeCoursey(亚利桑那大学)、JADES 合作组织位于马里兰州巴尔的摩市的太空望远镜科学研究所(STScI)的美国宇航局爱因斯坦研究员贾斯汀-皮埃尔(Justin Pierel)说:"这确实是我们对高红移宇宙的瞬态科学的第一个样本。我们正试图确定遥远的超新星是否与我们在附近宇宙中看到的超新星有本质区别或非常相似。"皮埃尔和 STScI 的其他研究人员提供了专家分析,以确定哪些瞬变实际上是超新星,哪些不是,因为它们往往看起来非常相似。研究小组发现了一些高红移超新星,包括光谱学上确认的最远的一颗,红移为 3.6。它的祖星在宇宙只有 18 亿岁时爆炸。这是一颗所谓的核心坍缩超新星,是一颗大质量恒星的爆炸。这段动画展示了白矮星爆炸的过程,白矮星是一颗恒星的残余物,密度极高,其核心已无法再燃烧核燃料。在这颗"Ia 型"超新星中,白矮星的引力从附近的恒星伴星那里偷走了物质。当白矮星的质量估计达到目前太阳质量的 1.4 倍时,它再也无法承受自身的重量,于是爆炸了。资料来源:NASA/JPL-Caltech天体物理学家特别感兴趣的是 Ia 型超新星。(这些爆炸的恒星非常明亮,可以用来测量遥远的宇宙距离,帮助科学家计算宇宙的膨胀率。研究小组至少发现了一颗红移为 2.9 的 Ia 型超新星。这颗爆炸产生的光在 115 亿年前开始向我们传播,当时宇宙的年龄只有 23 亿年。此前经光谱学确认的 Ia 型超新星的距离记录是红移 1.95,当时宇宙的年龄是 34 亿年。科学家们迫切希望分析高红移下的Ia型超新星,看看它们是否都具有相同的内在亮度,而与距离无关。这一点至关重要,因为如果它们的亮度随红移而变化,那么它们就不能成为测量宇宙膨胀率的可靠标记。Pierel 分析了这颗发现于红移 2.9 的 Ia 型超新星,以确定其内在亮度是否与预期不同。虽然这只是第一个这样的天体,但结果表明没有证据表明Ia型亮度会随红移而变化。我们还需要更多的数据,但现在,基于 Ia 型超新星的宇宙膨胀率理论及其最终命运仍然保持不变。皮埃尔还在美国天文学会第244次会议上介绍了他的研究成果。早期宇宙的环境与现在截然不同。科学家们期望看到来自恒星的古老超新星,这些恒星所含的重化学元素远远少于太阳这样的恒星。将这些超新星与本地宇宙中的超新星进行比较,将有助于天体物理学家了解早期恒星的形成和超新星的爆发机制。STScI研究员马修-西伯特(Matthew Siebert)说:"我们基本上为瞬变宇宙打开了一扇新窗口。从历史上看,每当我们这样做的时候,我们都会发现一些极其令人兴奋的东西一些我们意想不到的东西。"JADES团队成员、亚利桑那大学图森分校研究教授Eiichi Egami说:"由于韦伯望远镜非常灵敏,它几乎能在其指向的所有地方发现超新星和其他瞬变体。这是利用韦伯望远镜对超新星进行更广泛观测的重要第一步。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

詹姆斯·韦伯太空望远镜拍摄的环状星云照片

詹姆斯·韦伯太空望远镜拍摄的环状星云照片 欧空局(ESA)近日发布官方博文,展示了由詹姆斯・韦伯太空望远镜拍摄的环状星云(Ring Nebula)照片。 该环形星云距离地球大约 2000 光年,是位于北半球天琴座的一个行星状星云,非常明亮,在极佳的观测条件下,通常只需使用简单的双筒望远镜即可从地球上辨别出来。 这种天体是红巨星在成为白矮星之前的演化过程中的最后阶段,将气体壳驱逐到周围并电离所形成的天体。欧空局表示环形星云内部大约有 2 万个富含氢分子的致密小球。来源 , 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

哈勃太空望远镜通过观测Ia型超新星来测量宇宙距离

哈勃太空望远镜通过观测Ia型超新星来测量宇宙距离 哈勃太空望远镜通过观测 Ia 型超新星(如 NGC 3810 中的超新星)来帮助测量宇宙距离,利用它们一致的亮度来测量根据星系间尘埃效应调整后的距离。资料来源:欧空局/哈勃和美国国家航空航天局,D. Sand, R. J. Foley天体物理学的一项重要任务是测量星系、类星体和星系团等真正遥远天体的距离。在研究早期宇宙时尤其如此,但这是一项艰巨的任务。只有太阳、行星和一些邻近恒星等少数邻近天体,我们才能直接测量它们的距离。除此之外,我们还需要使用各种间接方法;其中最重要的一种方法就是研究 Ia 型超新星,而这正是NASA/ESA 哈勃太空望远镜的作用所在。NGC 3810,也就是这张照片中的星系,是 2022 年一颗 Ia 型超新星的宿主。2023 年初,哈勃聚焦于这个星系和其他一些星系,仔细研究最近的 Ia 型超新星。这种超新星是由白矮星爆炸产生的,它们的亮度都非常一致。这使得它们可以被用来测量距离:我们知道Ia型超新星应该有多亮,所以我们可以根据它的暗淡程度来判断它的距离有多远。这种方法的一个不确定因素是,地球和超新星之间的星际尘埃会阻挡部分光线。你怎么知道光的减少有多少是由距离造成的,有多少是由尘埃造成的?在哈勃的帮助下,我们找到了一个巧妙的解决方法:用紫外光和红外光拍摄同一 Ia 型超新星的图像,紫外光几乎完全被尘埃遮挡,而红外光则几乎不受影响地穿过尘埃。通过仔细观察每个波长有多少光穿过,就可以校准超新星亮度和距离之间的关系,从而考虑到尘埃的影响。这幅图像描绘的是螺旋星系 NGC 3810。2023 年,该星系被列入哈勃计划,以提高利用 Ia 型超新星进行距离测量的精确度。之所以能做到这一点,是因为 NGC 3810 中的一颗白矮星刚刚变成超新星,哈勃在超新星从视野中消失之前捕捉到了这幅图像。超新星以发现年份命名,后跟字母递增标签a、b,以此类推。如今,通过自动巡天,每年都会发现成千上万颗超新星,因此这颗超新星被命名为SN 2022zut,即2022年发现的第18000142颗超新星!图片来源:欧空局/哈勃和美国国家航空航天局,D. Sand, R. J. Foley哈勃可以用同一台仪器对这两种波长的光进行详细观测。这使它成为了这项实验的完美工具,事实上,用来制作 NGC 3810 这幅美丽图像的部分数据就集中在它的 2022 年超新星上。你可以看到它在银河核下方的一个光点,或者在上面的注释图像中看到它。测量宇宙距离的方法有很多;因为 Ia 型超新星非常明亮,所以当发现它们时,它们是最有用、最精确的工具之一。此外,还必须使用许多其他方法,要么作为对其他距离测量的独立检验,要么测量更近或更远的距离。其中一种方法也适用于星系,那就是将星系的旋转速度与亮度进行比较;根据这种方法,我们发现 NGC 3810 距地球 5000 万光年。编译自/ScitechDaily ... PC版: 手机版:

封面图片

全球最大型太空望远镜詹姆斯·韦伯太空望远镜公布了木星前所未有的景象。

全球最大型太空望远镜詹姆斯·韦伯太空望远镜公布了木星前所未有的景象。 耗资100亿美元的韦伯望远镜今年开始服役。今年7月,该望远镜拍摄了这颗太阳系最大行星的照片,详细地呈现了围绕木星的极光、巨大的风暴大红斑、卫星和木星环。 由于人眼无法看到红外线,该图像经过人工上色,以突出特征。

封面图片

韦伯望远镜揭示蛇夫座星云中的壮观恒星喷流

韦伯望远镜揭示蛇夫座星云中的壮观恒星喷流 在美国宇航局詹姆斯-韦伯太空望远镜上的近红外相机(NIRCam)拍摄的这幅蛇夫座星云图像中,天文学家发现在一个小区域内(左上角)有一组排列整齐的原恒星外流。在韦伯望远镜的图像中,这些喷流呈现出红色的明亮块状条纹,这是喷流撞击周围气体和尘埃产生的冲击波。资料来源:NASA、ESA、CSA、STScI、Klaus Pontoppidan(NASA-JPL)、Joel Green(STScI)在星云的一个区域,韦伯已经将以前看似模糊的球状物解析成了清晰的原恒星外流。更让研究人员惊讶的是,这些外流被看成是排列整齐的,这表明我们在这一区域的历史上捕捉到了一个独特的时刻,并提供了恒星诞生的基本信息。在韦伯太空望远镜的新图像中首次进行了同类检测美国国家航空航天局詹姆斯-韦伯太空望远镜的近红外相机(NIRCam)首次捕捉到了天文学家一直希望直接拍摄的现象。在这幅令人惊叹的蛇夫座星云图像中,这一发现位于这个年轻的、附近恒星形成区的北部区域(见左上方)。天文学家发现了一组有趣的原恒星外流,它们是新生恒星喷出的气体射流与附近的气体和尘埃高速碰撞后形成的。通常情况下,这些天体在一个区域内会有不同的方向。然而,在这里,它们朝着同一个方向倾斜,程度相同,就像暴风雨中倾泻而下的雨夹雪。韦伯望远镜精湛的空间分辨率和近红外波长的灵敏度使得发现这些排列整齐的天体成为可能,这为了解恒星是如何诞生的基本原理提供了信息。位于加利福尼亚州帕萨迪纳市的美国宇航局喷气推进实验室的首席研究员克劳斯-庞托皮丹(Klaus Pontoppidan)说:"天文学家长期以来一直认为,当云层坍缩形成恒星时,恒星会趋向于朝同一方向旋转。然而,这种现象以前从未如此直接地出现过。这些排列整齐、拉长的结构是恒星诞生的基本方式的历史记录"。这张来自美国宇航局詹姆斯-韦伯太空望远镜的图片显示了蛇夫座星云的一部分,天文学家在这里发现了一组排列整齐的原恒星外流。这些喷流以红色的明亮块状条纹为标志,这是喷流撞击周围气体和尘埃产生的冲击波。在这里,红色代表分子氢和一氧化碳的存在。资料来源:NASA、ESA、CSA、STScI、Klaus Pontoppidan(NASA-JPL)、Joel Green(STScI)恒星形成的机理那么,恒星喷流的排列与恒星的旋转有什么关系呢?当星际气体云撞向自身形成恒星时,它的旋转速度会更快。气体继续向内移动的唯一方法就是去除部分自旋(称为角动量)。年轻恒星周围会形成一个物质盘,将物质向下输送,就像排水口周围的漩涡一样。内盘中的漩涡磁场将部分物质发射成双子喷流,以垂直于物质盘的相反方向向外喷射。在韦伯望远镜的图像中,这些喷流以红色的明亮块状条纹为标志,这是喷流撞击周围气体和尘埃产生的冲击波。在这里,红色代表分子氢和一氧化碳的存在。这幅图像显示的是美国宇航局詹姆斯-韦伯太空望远镜的近红外相机(NIRCam)看到的蛇夫座星云中心。在这幅图像中,整个区域中不同色调的丝状物和缕状物代表了云中仍在形成的原恒星反射的星光。在某些区域,反射光前方有尘埃,在这里呈现出橙色的漫射阴影。资料来源:NASA、ESA、CSA、STScI、Klaus Pontoppidan(NASA-JPL)、Joel Green(STScI)增强型成像技术韦伯望远镜的主要作者、巴尔的摩太空望远镜科学研究所的乔尔-格林(Joel Green)说:"蛇夫座星云的这一区域蛇夫座北星云只有在韦伯望远镜上才能清晰地看到。我们现在能够捕捉到这些极其年轻的恒星和它们的外流,其中一些恒星以前只是以圆球的形式出现,或者由于它们周围厚厚的尘埃而在光学波长下完全看不到。"天文学家说,在年轻恒星生命的这一时期,有几种力量可能会改变外流的方向。其中一种方式是双星相互旋转,摆动方向,随着时间的推移扭曲外流的方向。这幅由韦伯近红外相机(NIRCam)拍摄的蛇夫座星云图像显示了罗盘箭头、比例尺和供参考的色键。向北和向东的罗盘箭头显示了图像在天空中的方位。请注意,相对于地面地图上的方向箭头(从上往下看),天空中的北方和东方之间的关系(从下往上看)是颠倒的。刻度条标注的单位是光年,也就是光在一个地球年所走过的距离。一光年约等于 5.88 万亿英里或 9.46 万亿公里。这张图片显示的是不可见的近红外光波长,这些波长已被转换成可见光的颜色。色键显示了在收集光线时使用了哪些 NIRCam 滤光片。每个滤光片名称的颜色就是用来表示通过该滤光片的红外光的可见光颜色。资料来源:NASA、ESA、CSA、STScI、Klaus Pontoppidan(NASA-JPL)、Joel Green(STScI)蛇夫座星云的恒星蛇夫座星云距离地球 1300 光年,只有一两百万年的历史,从宇宙的角度来看非常年轻。它也是一个新形成的恒星(约 10 万年)特别密集的星团的所在地,在这张图片的中心可以看到。其中一些恒星的质量最终将达到我们太阳的质量。格林说:"韦伯望远镜是一台年轻恒星天体探测机器。在这个领域中,我们可以捕捉到每一颗年轻恒星的路标,直至质量最低的恒星。我们现在看到的是一幅非常完整的画面。"在这张照片的整个区域中,不同色调的丝状物和缕状物代表了云中仍在形成的原恒星反射的星光。在某些区域,反射光前方有灰尘,在这里呈现出橙色的漫射阴影。2020 年,美国宇航局哈勃太空望远镜的数据显示,一颗恒星的行星形成盘发生了扇动或移动,"蝙蝠阴影"由此得名。在韦伯图像的中心位置可以看到这一特征。未来研究之路新图像和偶然发现的对齐天体实际上只是这项科学计划的第一步。研究小组现在将利用韦伯望远镜的近红外摄谱仪(NIRSpec)来研究云的化学构成。天文学家们对确定挥发性化学物质如何在恒星和行星形成过程中存活下来很感兴趣。挥发性物质是在相对较低的温度下升华或从固态直接转变为气态的化合物,包括水和一氧化碳。然后,他们将把他们的发现与在类似类型恒星的原行星盘中发现的数量进行比较。"从最基本的形式来看,我们都是由来自这些挥发物的物质构成的。地球上的大部分水起源于数十亿年前太阳还是一颗幼年原恒星的时候,"庞托皮丹说。"观察原恒星在形成原行星盘之前这些关键化合物的丰度,有助于我们了解太阳系形成时的独特环境。"这些观测是第 1611 号一般观测者计划的一部分。研究小组的初步结果已被接受在《天体物理学报》上发表。詹姆斯-韦伯太空望远镜(JWST)是一个大型天基观测站,将于 2021 年 12 月发射。它是哈勃太空望远镜的科学继承者。JWST 配备了一个 6.5 米长的主镜,专门观测红外光谱中的宇宙,使其能够比以往任何时候都能回溯到更久远的过去。这种能力使望远镜能够研究最初星系的形成、恒星和行星系统的演化以及遥远系外行星的大气层。JWST 位于第二拉格朗日点(L2),距离地球约 150 万公里,旨在提供前所未有的分辨率和灵敏度,为探索宇宙打开新的窗口。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人