蔚来将于 年第四季度计划交付 kwh 固态电池,采用固态电解液、硅碳复合负极材料、超高镍正极材料,单体能量密度达 Wh/kg。

蔚来将于 年第四季度计划交付 kwh 固态电池,采用固态电解液、硅碳复合负极材料、超高镍正极材料,单体能量密度达 Wh/kg。 据介绍,蔚来全新 ES 届时续航可达到 km,ES 可达到 km,ET 的 NEDC 续航可突破 km,用户可以通过电池灵活升级方案享受该电池。

相关推荐

封面图片

固态电池,小心被“玩”坏

固态电池,小心被“玩”坏 来源/镜观台拍摄海外市场方面,丰田计划2027年实现全固态电池装车;韩国SKOn正在开发高分子氧化物复合和硫化物两种固态电池,目标是到2026年生产出原型产品,2028年实现商业化;三星SDI正在开发一种没有负极的固态电池,预计将于2027年量产。固态电池的消息满天飞,动力电池的霸主宁德时代也不得不出来发声。宁德时代首席科学家吴凯表示,全固态电池的成熟度指标,若用1-9数字表示,宁德时代目前的成熟度在4的水平,目标到2027年到7-8的水平。简言之,宁德时代的固态电池离量产还尚早。在全固态电池研发方面已有十多年的积累,且有近千人研发团队的宁德时代尚且如此,近一两年量产,甚至宣称已经搭载上车的固态电池,其成色问题就值得商榷了。固态电池虽好,经不起“恶搞”新能源汽车行业发展离不开动力电池,目前的动力电池无论是三元锂电池还是磷酸铁锂,虽然在整车安全、续航里程等方面还在进步,但一定程度上在技术上已经很难有大的突破了。随着锂离子电池成本优化接近极限,新能源汽车产业正迫切寻求技术革新以突破现有瓶颈。固态电池作为下一代电池技术的明星产品,凭借其在安全、能量密度及循环寿命方面的显著优势,被视为推动电动汽车发展的新引擎。所谓固态电池,顾名思义,是和液态电池相对应的,是一种使用固态电极和固态电解质的电池。目前市面上主要的锂离子电池内置是含有液态电解质的。传统液态电池由正极、负极、电解液、隔膜四大部分组成。固态电池用固态电解质替换传统液态电解液和隔膜。固态电池的核心特征就在于使用固态电解质,这也是实现固态电池高能量密度、高循环稳定性、高安全性的关键。其工作机理与传统锂电池一致,依靠锂离子在正极和负极之间往返移动,进行化学能和电能之间的转换与储存。根据液态电解质的含量逐步下降,固态电池发展路径可分为:半固态电池、准固态电池和全固态电池。这也就给了一些车企在宣传上提供了“便利”,第一家、第一款、第一代的修饰语层出不穷。腾势汽车总经理兼首席共创官赵长江也忍不住在微博吐槽“就是在玩文字游戏”。中科院院士、清华大学教授欧阳明高也认为,中国在全固态电池领域的研发,目前来看认识还不统一。显然,过度炒作对固态电池的发展极为不利。事实上,作为全固态电池的过渡方案,半固态电池在性能上已大幅提升,安全性较好、能量密度较高、循环寿命更长、工作温度范围更宽、耐挤压、耐震动等。但从制造工艺来说,半固态电池基本可沿用现有液态电池的制造工艺,生产难度远远小于全固态。液态变固态,换“汤”也换“药”但液态电池要直接升级为固态电池,就需要“改头换面”了。如果把动力电池比作汤药,那电解质可以说是“汤”,正负电极和隔膜可说成是“药”。从液态电池到固态电池,不光是把“汤”换了,液态电解质变成固态,“药”也逐步换了。基于目前固态电池的发展历程,还可以将固态电池的发展分为三个阶段:第一阶段:将传统的电解液换成固态电解质,正负极和传统用的是一样,均采用负极石墨和正极三元锂或磷酸铁锂;第二阶段:更换负极材料,取消掉负极的石墨或硅,使用金属锂来提升能量密度;正极不变,采用磷酸铁锂或者三元材料。第三阶段:正负极都换,负极用金属锂,正极就可以换成不含锂的高能量的材料。如此来看,第一阶段换的就是“汤”,第二三阶段就是把“药”也换掉了。换“汤”比较好理解,固体电解质相对于电解液,电化学范围更广(电压更广),电解质不参与化学反应,让锂离子通过。因此,可以选择容量更大的正极材料,或者选择电压差更大的正负极材料,从而提高能量密度。那为什么要把作为“药”的正负极也更新换代呢?按照目前提高电池能量密度的手段,在正极端不断地提高镍的含量虽然可以提升电池能量密度,但是高镍电池对电池的稳定性要求具备更高的电池管理基础。因此,三元锂短期内要突破一个量级还是有一定的挑战。未来,可能也只有固态电池会将电池能量密度提升一个量级。太蓝新能源就在近日宣布成功制备出世界首块车规级单体容量120Ah,实测能量密度达到720Wh/kg的超高能量密度体型化全固态锂金属电池。作为对比,目前磷酸铁锂电池的能量密度为160-180wh/kg左右,三元锂在150-250Wh/kg之间。另外,固态电池凭借自身较高的机械强度在运用的过程中可以抑制电池循环使用之中的锂枝晶的刺穿,使锂金属负极的应用不再是梦想。把电极换为金属锂,其比容高,电压大,避免了液态电池用金属锂作负极会因多次充放电粉化、枝晶生长,导致循环性差,甚至枝晶刺穿薄膜,引起短路的风险。固态想上位,至少还需20年?这些显然就是固态电池大受欢迎的原因所在。高安全性一定是固态电池的首要优势。根据有关数据,新能源汽车起火事故原因中,电池自燃占比31%。相较之下,固态电解质不可燃、耐高温、无腐蚀、不挥发、不漏液,同时具有一定机械强度,安全性更好;半固态电解质中液体占比也小于10%,可燃性大大降低。五一假期发生的多起新能源车燃烧事件,更让消费者期待固态电池的到来。同时,固态电池拥有更高能量密度和较小体积。固态电池电化学窗口宽,能承受更高电压(5V以上),材料选择范围广。因此,可通过采用高比容量的正极、负极材料,使能量密度达到500Wh/kg甚至更高,远超液态350Wh/kg理论极限。而固态电解质取代隔膜和电解液,正负极之间的距离可以缩短到只有几到十几个微米,从而大幅降低电池厚度。因此,同样电量情况下,固态电池体积更小。另外,固态电池还具备宽温区运行的优势。电动车在冬季续航里程之所以下滑明显,主要在于液态电解质在冬季低温环境下流动性下降。而固态电解质可以在-30℃至100℃的更广泛温度范围内稳定工作。当然,固态电池也并非完美无缺,目前来看还是有很多缺点存在的。比如:与液态电解质相比,固态电解质与电极材料之间的接触面积较小,导致离子传输速度较慢,影响了电池的充电和放电效率;界面电阻太大,使得快充过程中的能量损耗增加,快充效率受限;固态电池的充放电循环次数有限,循环寿命较短;生产技术尚不成熟,工艺复杂,生产效率低,导致其成本远高于液态电池。这些显然都是固态电池全面商业化必须面对的挑战。欧阳明高就表示,全固态电池是公认的下一代电池的首选方案之一,也是下一代电池技术竞争的关键制高点,但是也要注意防范激进技术路线带来的颠覆性风险。“液态电池的应用周期至少还有20年。固态电池要想替代液态锂离子电池50%的市场份额,至少需要20至30年。”欧阳明高如是说。 ... PC版: 手机版:

封面图片

欣旺达携手松山湖材料实验室 共建固态电池公共研发平台

欣旺达携手松山湖材料实验室 共建固态电池公共研发平台 7 月 5 日,欣旺达子公司欣旺达动力科技股份有限公司与松山湖材料实验室在东莞正式签署《关于共建东莞松山湖固态电池公共研发平台框架协议》。这标志着,欣旺达动力与松山湖材料实验室未来将在固态电池领域开展深度合作,共同推动固态电池技术产业的商业化发展与市场化应用。松山湖材料实验室是广东省第一批省实验室之一,也是大湾区综合性国家科学中心先行启动区(松山湖科学城)建设的重要科研平台。能源材料是松山湖材料实验室主要研究方向之一,目前,实验室在新一代正极材料、负极材料、电解质材料和半固态电池领域已形成技术优势并开始向行业提供中试产品。由中国科学院物理研究所和宁波材料所等研究团队组成的联合团队,已初步突破全固态电池等关键工艺技术。

封面图片

固态电池研发之难 连宁王都连声叫苦

固态电池研发之难 连宁王都连声叫苦 近年来,随着海内外多家企业接连给出固态电池的量产时间点,业内对固态电池走向落地应用的期望值有所提升,二级市场也纷纷作出反应,与固态电池相关的概念股今年接连涨停。为何行业与资本市场对此纷纷看好这项技术?作为动力电池的新形态,其是否会替代目前主流的三元锂电池和磷酸铁锂电池?动力电池的“终极路线”所谓固态电池,简单理解即一种使用固体电极和固体电解质的电池。现有的动力锂电池材料体系包含碳/硅负极、多孔隔膜以及液体电解质,通过锂离子的移动而产生电流。而全固态电池是一个完全致密的状态,采用固态电解质和固态隔膜,碳/硅负极改为金属锂负极,充电时,锂金属会沉积在负极上,在放电的过程中溶解。基于这种材料体系的转变,固态电池有着液态电池无法企及的优势。例如,固态电池更为稳定,不易泄漏、不易燃烧,大大降低了电池起火爆炸的风险,安全性更高。另外,由于能量密度更高,可达到 400Wh/kg 以上(作为对比,磷酸铁锂电池的能量密度一般在 100Wh/kg~180Wh/kg,三元锂电池的能量密度通常在 150Wh/kg~250Wh/kg),其在性能表现上也优于液态电池,充电速度更快(最高可超过 10C)、续航里程更长。同时,全固态电池的电解质在 -30°C 和 100°C 的范围内都不会凝固,不会气化,这意味着冬天在寒冷地区不用担心续航问题,也不需要很复杂的热管理。这也就不难理解为何固态电池备受业界推崇,成为海内外车企争相布局的领域。从全球厂商的研发路径来看,固态电池主要有聚合物、氧化物和硫化物三种研发路线。不过,目前尚未有任何一种技术路径为绝对性方向,而是都处在探索阶段。“无论是聚合物、氧化物还是硫化物,目前很难有一种电池的所有性能都比别的电池有优势,而是各有优缺点。”广汽研发人员告诉虎嗅汽车。在广汽看来,未来固态电池的终极形态会是多元的复合体系,于是广汽全固态电池基于两条路线并行推进开发一个是以硫化物为主的复合体系,另一个是聚合物为主的复合体系。宁德时代同样认为没有一种固态电解质是十全十美的,其更为看好硫化物技术路线,认为其能够更快走向量产。同样在硫化物全固态电池领域布局的还有丰田,但双方在硫化物空气稳定性和制造工艺上采用了不同的策略。全球各家厂商都希望攻克全固态电池,但目前尚未有真正实现量产攻坚的玩家。需要指出的是,虽然近年来行业内有部分车企宣称用上了固态电池,但实际上是半固态电池,而非并非真正的固态电池形态。“根据行业内规则,一般是按液态电解质占电芯的比重来分:液态(25wt%)、半固态(510wt%)、准固态(05wt%)和全固态(0wt%)。”广汽研发人员告诉虎嗅汽车,“不管是液态电池还是半固态电池,只要电池内部存在电解液,一旦破损泄漏都会有短路起火的风险,与当前常规液态锂离子电池并无本质差异。”固态电池,可望不可及固态电池百般好,但无奈这是块“饼”。较早一批从事固态电池研发的厂商已经在这条赛道上走了十多年,丰田从 2012 年开始布局研发,宁德时代也差不多在这一时期启动研究,但都没能将固态电池推到量产阶段。从国内外车企透露的量产时间点来看,固态电池的产业化时间大概在 2027-2030 年。需要厘清的是,“上车不等于大规模量产”,推出产品形态到大规模量产落地之间还存在多方面的技术攻坚。“五年后肯定会有固态电池的车出来,再过三五年会大面积铺开。”吉利研究院专家告诉虎嗅汽车,但考虑到目前各家车企对固态电池的重视程度以及技术快速推进,量产时间可能提前。固态电池研发之难,连宁王都连声叫苦。曾毓群曾在公开场合表示,“宁德时代已经在这方面投资了 10 年,固态电池只有在使用新型化学材料、负极电极使用纯锂金属的情况下才会有很大优势,要将这种电池推向市场还有很多困难。”首先是电解质材料选择上,以相对主流的硫化物固态电解质需要的硫化锂为例,后者化学性质不稳定,与空气、水反应都会生成有毒化合物,生产环境控制要求严苛,量产困难,由于与目前的电池材料体系差别巨大,固态电池缺乏成熟的材料供应商。在正负极材料上,由于硅/碳负极体积易膨胀大不适用于固态电池,固态电池的正负极材料通常会选择一些能提高能量密度的金属,而锂金属负极现在还不成熟。在界面工程与稳定性上,固态电池中的电解质与正负极之间的界面问题也是一大挑战。由于采用固体电极和固体电解质,其有效接触能力较弱,会造成影响电池性能的界面阻抗。另外,由于固体电解质导电率差、采用锂金属易发生枝晶生长存在安全风险等问题,这些亟待攻关的技术难点。再者,对于量产和普及来说,全固态电池还面临着成本的问题,包括材料成本和制造成本。据中邮证券测算,目前固态电池较液态电池成本高出 30% 以上。材料层面,固态电解质目前仍难以做到轻薄化,用到的部分稀有金属原材料价格较高,叠加为高能量密度使用的高活性正负极材料尚未成熟,固态电解质和正负极成本都不低。在生产层面,固态电池的生产工艺相对复杂,成本也较高。可以预见,全固态电池短期内难以实现大规模的商业化。从理论层面来看,固态电池比液态电池有着多方面的优势,但这项被称为“动力电池领域的珠穆朗玛峰”的技术还仅是将来时形态,即使在三五年内能够有技术突破,但要形成替代,还需突破成本关口。从产业态度来看,未来 10 年无疑是全固态电池研发的关键机遇期。但对于一项新兴技术,更重要的是聚焦于技术层面的攻坚,而不是虚炒营销概念,将其作为宣传和推起资本热度的手段。 ... PC版: 手机版:

封面图片

芳源股份:公司可生产固态电池用的高镍三元材料 目前已达到吨级出货量

芳源股份:公司可生产固态电池用的高镍三元材料 目前已达到吨级出货量 芳源股份(688148.SH)12 月 23 日在投资者互动平台表示,公司可生产固态电池用的高镍三元材料,目前已达到吨级出货量。-电报频道- #娟姐新闻:@juanjienews

封面图片

宁德时代公布固态电池最新进展:2027年量产 目前研发进度不到50%

宁德时代公布固态电池最新进展:2027年量产 目前研发进度不到50% ▲宁德时代工厂目前,在固态电池的研发上,宣称首款搭载了固态电池的智己L6背后的电池供应商清陶能源从此一举走入公众视野,卫蓝新能源则是在NIO Day上宣布蔚来150kWh电池包时走红。同时,这是目前在消费市场上消息最多的企业了。清陶能源和卫蓝新能源也都分别宣布其首款全固态电池包要在2027年量产。从目前的市场划分来看,清陶能源和上汽深度绑定并与北汽、广汽等多家主流车企建立了合作关系,不断拓展应用市场。上汽在多个轮次的融资中对清陶能源进行了投资,成为其第一大投资人。卫蓝新能源则与蔚来、吉利和小米等新能源车企合作紧密,已向蔚来正式交付半固态电池,李斌还曾经全程直播了150kWh电池包的续航。▲李斌直播蔚来150kWh电池包续航尽管目前半固态电池已经有一部分上车了,但是目前全球尚未有车企实现全固态电池的量产上车。可以说,此次宁德时代的固态电池进展的公开,也是给全固态电池行业的量产锚定了时间线。毕竟,在发展迭代十分迅速的电车市场,落后就代表着市场被对手蚕食。一、宁德时代投资者日纪要公开 确认固态电池量产时间目标在2024年4月宁德时代的业绩会上,董事长曾毓群曾指出,固态电池在技术层面上仍需克服固态离子扩散的基础科学问题,商品化的道路仍然漫长。▲宁德时代董事长曾毓群而在2个月后的投资者交流活动上,针对投资者关于固态电池的提问,宁德时代方面指出,如果用技术和制造成熟度作为评价体系(1-9打分),其在全固态电池研发项目目前处于4的水平,目标是到2027年达到7-8的水平,有望实现小批量生产全固态电池。可以看出,宁德时代给自己的固态电池研发提出了一个2027年小规模量产的目标。资料显示,宁德时代在全固态电池领域已有部分进展,其的技术路线主要依赖于凝聚态和硫化物双重材料体系,目标是实现500Wh/kg的能量密度。全固态电池的技术路线主要包括硫化物、氧化物、聚合物、无机-有机复合电解质及薄膜技术等,各自具备独特的离子导电性、稳定性和加工性等优势。宁德时代选择的凝聚态聚合物和硫化物双重材料体系作为固态电池中的两种主要电解质材料,各自有比较明显的优缺点。凝聚态材料以其高离子导电性、良好的稳定性和加工性能而受到青睐,但存在界面接触问题和成本较高的问题。相比之下,硫化物材料以其高离子导电性、良好的界面接触和较高的能量密度优势显著,但化学稳定性和制备工艺的复杂性是需要克服的难题。可以说宁德时代选择凝聚态和硫化物双重材料体系有助于其尽快实现量产目标。二、主流电池厂目标已定 直指2027目前主流进行固态电池研发的厂商中,已有多家厂商明确了其全固态电池的量产目标。▲部分电池厂商全固态电池量产目标在已经投入量产的半固态电池企业中,清陶能源全固态电池能量密度超过500Wh/kg,并计划在2027年实现全固态电池的量产。而卫蓝新能源也有计划在2027年实现全固态电池的量产。同时清陶能源和卫蓝新能源在电池材料和技术上各有特色。清陶能源的智己L6采用了纳米尺度固态电解质包覆的超高镍正极材料和高比能复合硅碳材料,电解质材料则采用“超高离子电导率复合固态电解质”和“干法固态电解质一体成型”工艺。卫蓝新能源的蔚来ET7则采用了固液混合电解质,以期解决电池在高电压、安全性、锂枝晶和体积膨胀方面的挑战。▲锂离子电池和全固态电池的工作原理此外,国轩高科也在5月17日,首次发布采用全固态电池技术的金石电池,电芯能量密度达350Wh/kg,计划在2027年小批量装车实验。欣旺达则规划在2026年实现全固态电池量产,且能量密度更高。其计划第一代全固态电池能量密度达400Wh/kg,第二代达500Wh/kg。在国际市场,日韩企业如三星SDI和LG化学也在积极推进固态电池的研发。三星SDI计划在2027年量产全固态电池,而LG化学预计在2028年推出氧化物全固态电池,并在2030年推出硫化物全固态电池。可以说,目前绝大多厂商都将全固态电池2027年开始量产作为目标。▲广汽全固态动力电池模型展示与此同时,中国全固态电池协同创新平台(CASIP)也在2024年初成立,旨在推进全固态电池的研发和应用。这个平台包括了工信部、科学技术部、学术界以及宁德时代、比亚迪等多家主流电池厂商,目标是加速全固态电池的技术突破和商业化进程。结语:固态电池上车指日可待目前,绝大多数电池厂商都明确了其全固态电池的量产日期目标。作为目前最有可能实现续航突破的新技术,各大电池企业都在积极投身研发。目前距离2027年也只有3年左右的时间了,至于到时候各家厂商能拿出怎样的产品,大家不妨拭目以待。 ... PC版: 手机版:

封面图片

10分钟充满电 哈佛全华班团队带来固态电池新突破

10分钟充满电 哈佛全华班团队带来固态电池新突破 什么样的固态电池当前常见的锂离子电池,负极多为石墨材料,优点是工艺成熟,运用广泛,但缺点是理论比容量不高,为372mAh/g,商业化后大概会更低一点。这也是为什么如今的锂离子电池,特别是液态锂离子电池想要增加能量密度、续航里程,往往有个上限。因此,能量密度更高的固态电池一直被认为是锂离子电池的终极形态,是当下行业发展的方向。而固态电池一大热门负极材料就是锂,理论比容量高达3860mAh/g,并且拥有最低的电化学势(-3.04V),能更有效吸收和释放电子,也能对应更广泛的正极材料。另一种负极材料硅,虽然能量比容量更高(4200mAh/g),但在充放电中会产生剧烈体积变化,容易导致电池失效。但使用锂电子作为负极有一个最大问题就是锂枝晶,也是电池短路失效、热失控等严重后果的元凶。虽然固态电池使用固态电解质,对于锂枝晶的生长有一定抑制作用,但各类固态电解质的抑制效果不一,什么样的固态电解质是最优解现在也没个定论。并且,使用什么样的固态电解质也是目前固态电池热门的研究方向之一。对此,该论文的哈佛团队使用了一种独特方式:在锂金属负极上,增加一层由微米级硅元素(Si)和石墨(G)形成的复合材料的保护层,由此诞生了性能更优的固态电池。团队使用镍钴锰(NMC83),以及SiG复合材料保护的锂金属制作了一个固态电池包,尺寸为28X35平方毫米,远远大于一般实验室使用的纽扣电池的大小(约10倍-20倍)。在25MPa的工作压力下,该固态电池在5C的充电和放电倍率下循环,初始容量为125mAh/g。如图所示,2000次充放电循环后容量保持率为92%,3000次循环后为88%,6000次循环后仍然为80%,这个表现优于市场上其他的软包电池。并且,在不考虑压力夹具的情况下,该软包电池的能量密度已经达到218Wh/kg,超过当下主流大部分锂离子电池的能量密度。并且论文作者表示,未来还能通过减小隔板厚度、降低工作压力以及增加阴极负载进一步提升能量密度。以上这些数据已经充分证明了该SiG复合材料加入后,固态电池包具有的高性能。实际上,在固态电池中植入人工固态电解质界面层(SEI),提升固态电池的性能并不是什么新鲜事,那么为什么这样的SiG材料就能实现性能突破?材料关键:微米级硅颗粒众所周知,锂离子电池充放电的过程,就是电池阳极反复得到和失去锂离子的过程(或者说嵌入和脱嵌)。也就是说,如何在电池阳极快速、均匀、稳定地镀上或剥离锂,是该电池能否商业化的关键。该团队在实验过程中发现,在负极锂上增加由微米尺寸的硅构成的复合材料,恰好可以满足这一要求。论文通过透射电子显微镜(TEM)和能量色散谱(EDS)等技术发现,在电池循环过程中,锂离子只和浅层的硅发生反应:同时硅颗粒的外形没有明显变化:这意味着微米级的硅颗粒并不会由于硅化反应膨胀,锂化反应得到抑制;同时也不会提供有利于锂枝晶生长的环境,或者说抑制锂枝晶的生长。并且,在这种材料中,硅-石墨层提供了一种活跃的3D支架,颗粒之间的空隙区域有利于锂离子的嵌入和脱嵌,能有效提高电极容量,进一步提高电池的总体容量。论文作者使用硫化电解质,和由SiG复合材料保护的锂金属制造的固态电池,放电容量达到5600mAh/G,比理论容量4200mAh/G高出很多。并且,也由于锂离子的电镀和剥离可以在平坦的硅表面上快速发生,电池只需要约10分钟就可充满电。另外,论文中还对材料的锂化反应提出了一种新的衡量标准:每单位有效模量(Keff)的锂化组成(lithiation composition per Kcrit)。论文中指出,每一种材料都有一个相应的临界模量,超过这个模量,锂化反应就会得到有效抑制。因此在固态电池的材料选择中,可以选择临界模量更低的那种。作者分析了59524种材料条目,发现除了硅以外,银和镁合金也是具有前景的负极材料。论文作者简介本文团队为全华班,五位作者均来自哈佛大学约翰·保尔森工程与应用科学学院,Li Xin实验室。其中Ye Luhan和Lu Yang对本文作出同等贡献。Ye Luhan在2022年取得哈佛大学博士学位,研究方向包括固态电池、锂金属阳极、电化学等。Lu Yang同样在2022年在哈佛大学获得材料工程专业研究生学位(Postgraduate Degree),在这期间还担任助理研究员。Lu Yang本科毕业于华中科技大学电子封装技术专业,硕士和博士都在圣路易斯华盛顿大学就读,分别是电气工程专业和材料科学与工程专业。第三位作者Wang Yichao,2017年本科毕业于清华大学材料科学专业,后直博哈佛,在2022年获得材料科学博士学位,现在是哈佛大学艺术与科学研究生院的助理研究员。第四位作者Li Jianyuan是Li Xin实验室的访问学者。本文的通讯作者,Li Xin,目前是哈佛材料科学专业副教授,同时是该实验室首席研究员。Li Xin在2003年毕业于南京大学物理专业,后在宾夕法尼亚大学取得材料科学与工程博士学位,还在加州理工和麻省理工当过博士后研究员。2015年Li Xin加入哈佛,后建立Li Xin实验室,之前曾开发出一款寿命周期达1万次、3分钟可充满电的固态电池。不仅在学术研究等方面拥有成绩,2021年,Li Xin还和本文作者之一Ye Luhan等人共同创建Adden Energy,专注将实验室结果推进量产落地。目前,Ye Luhan是Adden Energy的CTO,Lu Yang是Adden Energy的聚合物与电池科学家。上述的SiG材料技术也授权给了Adden Energy,推进该技术的量产落地。据Li Xin透露,公司已经扩大该技术的规模,能够制造出智能手机大小的软包电池。对于这项新的技术突破,有网友表示非常不错。他认为这就是在朝正确的方向前进,电池的续航里程没有那么重要,充电时间才是关键。不过也有网友指出,如此短的充电时间则意味着更高的充电功率。比如要在5分钟内要让容量100kWh的电池充满电,需要1.2MW的充电功率,还不包括电路损耗,当前的充电基础设施并不能满足这样的需求,所以拥有光伏装置的慢充站才是更好的解决方案。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人