俄罗斯卫星通讯社俄罗斯科学家研制出大约半个世纪前预测的材料 ||

None

相关推荐

封面图片

韩国科学家研制出治疗骨骼破裂的新型“骨绷带”材料

韩国科学家研制出治疗骨骼破裂的新型“骨绷带”材料 骨再生是一个复杂的过程,目前促进骨再生的方法,如移植物和应用生长因子,都面临着费用增加等挑战。然而,随着一种能够促进骨组织发育的压电材料的问世,这一研究取得了突破性进展。由材料科学与工程系(DMSE)Seungbum Hong教授领导的KAIST研究小组于1月25日宣布,利用羟基磷灰石(HAp)独特的成骨能力,开发出了一种生物仿生支架,可在施加压力时产生电信号。这项研究是与全南国立大学聚合生物系统工程系的 Jangho Kim 教授领导的团队合作进行的。HAp 是一种存在于骨骼和牙齿中的基本磷酸钙物质。这种具有生物相容性的矿物质还具有防止蛀牙的作用,常用于牙膏中。骨再生领域的突破以往关于压电支架的研究证实了压电性在促进骨再生和改善各种聚合物基材料的骨融合方面的作用,但在模拟最佳骨组织再生所需的复杂细胞环境方面受到限制。然而,这项研究提出了一种新方法,利用 HAp 独特的成骨能力来开发一种模拟活体骨组织环境的材料。压电和地形生物仿生支架的设计和表征。(a) 通过加入 HAp 的 P(VDF-TrFE)支架提供的电学和地形学线索增强骨再生机制的示意图。(b) 制作过程示意图。资料来源:KAIST 材料成像与集成实验室研究小组开发了一种将 HAp 与聚合物薄膜融合在一起的制造工艺。通过对大鼠进行体外和体内实验,该工艺开发出的柔性独立支架在促进骨再生方面具有显著的潜力。了解骨再生原理研究小组还确定了其支架所依据的骨再生原理。他们利用原子力显微镜(AFM)分析了支架的电特性,并评估了与细胞形状和细胞骨骼蛋白形成有关的详细表面特性。他们还研究了压电性和表面特性对生长因子表达的影响。韩国科学技术院DMSE的Hong教授说:"我们开发出了一种基于HAp的压电复合材料,它可以像'骨绷带'一样加速骨再生。他补充说:"这项研究不仅为生物材料的设计提出了新的方向,而且在探索压电性和表面特性对骨再生的影响方面也具有重要意义。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

俄罗斯卫星通讯社媒体:俄罗斯科学家研制出一款在低温环境下不放电的电池 ||

封面图片

俄罗斯卫星通讯社俄罗斯科学家研制出一种可从柴油中获取氢气的独特催化剂 ||

封面图片

俄罗斯卫星通讯社非政治新闻:科学家研制出晒太阳即可自洁的新型面料 ||

封面图片

科学家研制出世界上首个3D打印 "大脑模型"

科学家研制出世界上首个3D打印 "大脑模型" 在维也纳医科大学和维也纳工业大学的一个联合项目中,开发出了世界上第一个三维打印的"大脑模型",该模型以脑部纤维结构为模型,可以使用一种特殊的磁共振成像(dMRI)进行成像。由维也纳医科大学和维也纳工业大学领导的科研团队在一项研究中表明,这些大脑模型可用于推进神经退行性疾病(如阿尔茨海默氏症、帕金森氏症和多发性硬化症)的研究。这项研究成果发表在《先进材料技术》(Advanced Materials Technologies)杂志上。磁共振成像(MRI)是一种广泛使用的诊断成像技术,主要用于检查大脑。核磁共振成像可在不使用电离辐射的情况下检查大脑的结构和功能。在磁共振成像的一种特殊变体扩散加权磁共振成像(dMRI)中,还可以确定大脑中神经纤维的方向。然而,在神经纤维束的交叉点很难正确确定神经纤维的方向,因为不同方向的神经纤维会在那里重叠。为了进一步改进流程以及测试分析和评估方法,一个国际团队与维也纳医科大学和维也纳工业大学合作开发了一个所谓的"大脑模型",该模型是利用高分辨率三维打印工艺制作的。带有微通道的小立方体维也纳医科大学的研究人员作为核磁共振成像专家,维也纳工业大学的研究人员作为三维打印专家,与苏黎世大学和汉堡大学医疗中心的同事密切合作。早在2017年,维也纳工业大学就开发出了一种双光子聚合打印机,可以实现升级打印。在此过程中,还与维也纳医科大学和苏黎世大学共同开展了脑模型的使用案例研究。由此产生的专利构成了脑模型的基础,该模型现已开发完成,并由维也纳工业大学的研究与转让支持团队负责监督。从外观上看,这个幻影与真正的大脑并无太大区别。它要小得多,形状像一个立方体。它的内部是非常细小的、充满水的微通道,大小与单个颅神经相当。这些通道的直径比人的头发丝还要细五倍。为了模仿大脑中精细的神经细胞网络,第一作者迈克尔-沃莱茨(Michael Woletz)(维也纳医科大学医学物理和生物医学工程中心)和弗兰兹斯卡-查鲁帕-甘特纳(Franziska Chalupa-Gantner)(维也纳工业大学3D打印和生物制造研究小组)领导的研究小组使用了一种相当不寻常的3D打印方法:双光子聚合。这种高分辨率方法主要用于打印纳米和微米级的微结构,而不是打印立方毫米级的三维结构。为了为 dMRI 制作合适尺寸的模型,维也纳科技大学的研究人员一直在努力扩大三维打印工艺的规模,以便能够打印出具有高分辨率细节的更大物体。高比例三维打印为研究人员提供了非常好的模型,在 dMRI 下观察时,可以确定各种神经结构。Michael Woletz 将这种提高 dMRI 诊断能力的方法与手机相机的工作方式进行了比较:"我们看到,手机相机在摄影方面取得的最大进步并不一定是新的、更好的镜头,而是改进所拍摄图像的软件。dMRI 的情况也类似:利用新开发的大脑模型,我们可以更精确地调整分析软件,从而提高测量数据的质量,更准确地重建大脑神经结构。"改进 dMRI分析软件因此,真实再现大脑中的特征神经结构对于"训练"dMRI 分析软件非常重要。使用三维打印技术可以创建可修改和定制的各种复杂设计。因此,大脑模型描绘的是大脑中产生特别复杂信号并因此难以分析的区域,如交叉的神经通路。因此,为了校准分析软件,需要使用 dMRI 对大脑模型进行检查,并像分析真实大脑一样分析测量数据。由于采用了三维打印技术,模型的设计是精确可知的,分析结果也可以检查。作为联合研究工作的一部分,维也纳医科大学和维也纳理工大学已经证明了这一点。所开发的模型可用于改进 dMRI,从而有利于手术规划和神经退行性疾病(如阿尔茨海默氏症、帕金森氏症和多发性硬化症)的研究。尽管概念得到了验证,但团队仍然面临着挑战。目前最大的挑战是扩大这种方法的规模:"双光子聚合的高分辨率使得打印微米和纳米范围的细节成为可能,因此非常适合颅神经成像。但与此同时,使用这种技术打印一个几立方厘米大小的立方体也需要相应的时间,"Chalupa-Gantner 解释说。"因此,我们不仅要开发更复杂的设计,还要进一步优化打印过程本身"。编译自:ScitechDaily ... PC版: 手机版:

封面图片

科学家利用LBO晶体研制出最强大的紫外激光器

科学家利用LBO晶体研制出最强大的紫外激光器 DUV光谱中的激光器已经在科学技术中有许多应用,如缺陷检测、光谱学、光刻和计量学。传统上,氟化氩(ArF)激光器已被用于产生高功率193nm激光器,用于光刻等应用。DUV激光器的其他应用包括微电子设备的生产,半导体集成电路,以及用于进行眼科手术的医学。在这些应用中,它通常被称为准分子激光器。然而,这些激光器不是完全相干的,因此不能用于更敏感的应用,如干涉光刻,在这种应用中,精细的特征必须以阵列的形式印刷。如此精细的应用需要更加相干的激光器,这为研究人员制造混合准分子激光器提供了机会。什么是混合准分子激光器?为了达到相干性要求,科学家们一直在考虑用固态种子代替气体(ArF)振荡器,使其成为混合激光器。除了提高相干性外,该设计还旨在提高激光的光子能量,使其甚至可以与碳化合物一起使用,并且产生最小的热影响。为了实现这一目标,193nm种子激光器的线宽需要保持在4千兆赫以下。声明称,这是通过使用目前可用的固态激光技术看到的对干涉至关重要的相干长度。在DUV激光器上取得了什么成果?中国科学院的研究人员通过使用LBO晶体实现了与193纳米混合准分子激光器相同的线宽。在他们的装置中,研究人员使用了一种复杂的两阶段和频率产生过程来实现60毫瓦(60兆瓦)的激光输出。该装置包括两个激光器,一个是258纳米,另一个是1553纳米。这些激光器分别来自镱混合激光器和掺铒光纤激光器,最终形成2mm×2mm×30mm Yb: YAG体晶体,提供所需的激光输出。由此产生的DUV激光脉冲持续时间为4.6纳秒(ns),重复频率为6千赫兹(kHz),线宽约为640兆赫(MHz)。值得注意的是,193nm激光器及其伴随的221nm激光器的输出功率为60mW,这是使用LBO晶体产生的最高功率。221-193nm转换效率为27%,258 - 193nm转换效率为3%,也创下了新的基准。这一研究证明了“用固态激光器泵浦LBO的可行性,可以可靠有效地产生193nm的窄线宽激光,并为使用LBO制造成本效益高的大功率DUV激光系统开辟了一条新途径。”因此,研究人员相信,LBO晶体可以用于产生更多的DUV激光器,输出功率从几毫瓦到几瓦不等,为这些波长开辟了进一步的途径。这项研究结果发表在《高级光子联系》(Advanced Photonic Nexus)杂志上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人