科学家研制出第一种无阳极钠固态电池

科学家研制出第一种无阳极钠固态电池 根据发表在《Nature Energy》期刊上的一项研究,芝加哥大学的科学家研制出第一种无阳极钠固态电池。阳极会逐渐磨损,一旦磨损掉电池就没用了,无阳极不存在该问题;今天广泛使用的电池都是锂电池,而锂是稀缺性矿物质,相比下钠既丰富又价格便宜。钠电池、固态电池和无阳极电池都已经存在,但将三者组合起来还是第一次。研究人员研制出的这种新电池能稳定循环数百次,用钠代替锂使得其制造更便宜和环保,新的固态设计使其更安全。 via Solidot

相关推荐

封面图片

无阳极钠固态电池面世美国科学家最新研制出全球首个无阳极钠固态电池。这一成果有助开发出廉价且能快速充电的大容量电池,以用于电动汽车

无阳极钠固态电池面世 美国科学家最新研制出全球首个无阳极钠固态电池。这一成果有助开发出廉价且能快速充电的大容量电池,以用于电动汽车和电网。相关研究论文发表于最新一期《自然・能源》杂志。研究团队认为,新研制出来的钠电池结构稳定,可循环数百次。去除阳极并用钠代替锂,使新型电池的生产过程变得更加经济环保。创新性的固态设计也提高了电池的安全性。 (科技日报)

封面图片

科学家研制出一种可以弯曲并浸泡在水中的太阳能电池

科学家研制出一种可以弯曲并浸泡在水中的太阳能电池 现在,一组科学家在《自然-通讯》(Nature Communications)上发表的研究成果恰恰做到了这一点。他们面临的挑战是克服以往设备的一个关键局限,即很难在不降低灵活性的情况下使其防水。光伏薄膜通常由几层组成。一层是有源层,它从太阳光中捕捉一定波长的能量,并利用这种能量将电子和"电子空穴"分离成阴极和阳极。然后,电子和空穴可以通过电路重新连接,产生电能。在以前的设备中,传输电子空穴的层通常是通过分层的方式依次形成的。不过,在目前的工作中,研究人员将阳极层(在本例中为银电极)直接沉积在活性层上,从而在各层之间形成更好的附着力。他们采用了热退火工艺,将薄膜暴露在摄氏85 度的空气中 24 小时。论文的第一作者熊思兴说:"形成这一层很有挑战性,但我们很高兴能完成这一任务,最终能制作出厚度仅为3微米的薄膜,我们期待看到测试结果。"测试结果令人鼓舞。首先,他们将薄膜完全浸泡在水中四个小时,发现它仍然保持了最初性能的 89%。然后,他们将薄膜在水下拉伸30%多达300次,结果发现即使受到这样的耐力测试,薄膜仍然保持了 96% 的性能。在最后的测试中,他们将薄膜放入洗衣机中进行循环洗涤,结果薄膜经受住了考验,这在以前是从未有过的。论文通讯作者之一 Kenjiro Fukuda 说:"我们所创造的是一种可以更广泛使用的方法。展望未来,通过提高设备在其他方面的稳定性,如暴露于空气、强光和机械应力,我们计划进一步开发我们的超薄有机太阳能电池,使其能够用于真正实用的可穿戴设备。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家研制出一种具有独特甚至矛盾特性的新型玻璃

科学家研制出一种具有独特甚至矛盾特性的新型玻璃 使用标准实验室设备在室温下轻松制备多肽玻璃。资料来源:特拉维夫大学特拉维夫大学(TAU)的研究人员创造了一种新型玻璃,这种玻璃具有独特甚至相互矛盾的特性,如具有很强的粘合性(粘性),同时又具有令人难以置信的透明性。这种玻璃在室温下与水接触后会自发形成,可为光学和电子光学、卫星通信、遥感和生物医学等一系列不同行业带来一场革命。这种玻璃是由以色列和世界各国的研究人员组成的研究小组发现的,研究小组由博士生 Gal Finkelstein-Zuta 和来自塔大生命科学院 Shmunis 生物医学与癌症研究学院和工程学院材料科学与工程系的 Ehud Gazit 教授领导。研究成果最近发表在著名的科学杂志《自然》上。制备后的固体肽玻璃。资料来源:特拉维夫大学"在我们的实验室,我们研究生物融合,特别是利用生物的奇妙特性来生产创新材料,"Gazit 教授解释说。"除其他外,我们还研究构成蛋白质的氨基酸序列。氨基酸和肽具有相互连接并形成具有确定周期性排列的有序结构的自然趋势,但在研究过程中,我们发现了一种独特的肽,它的行为与我们所知道的任何东西都不同:它没有形成任何有序的模式,而是一种无定形、无序的模式,就像玻璃一样。"在分子水平上,玻璃是一种液态物质,其分子结构缺乏有序性,但其机械特性却类似于固态。玻璃通常是通过快速冷却熔融材料并将其"冻结"在这种状态下,然后再让其结晶,从而形成一种无定形状态,具有独特的光学、化学和机械特性,以及耐久性、多功能性和可持续性。TAU 的研究人员发现,在室温条件下,由三个酪氨酸序列(YYY)组成的芳香肽在水溶液蒸发后会自发形成分子玻璃。(从左至右):Gal Finkelstein-Zuta 和 Ehud Gazit 教授。图片来源:特拉维夫大学Gal Finkelstein-Zuta 说:"我们所熟知的商用玻璃是通过快速冷却熔融材料制成的,这一过程被称为玻璃化。无定形的液态组织必须先固定下来,然后才能像晶体那样以更节能的方式排列,而这就需要能量必须将其加热到高温并立即冷却。另一方面,我们发现的玻璃是由生物构件组成的,它在室温下自发形成,不需要高温或高压等能量。只需将粉末溶解在水中就像制作酷儿汽水一样,玻璃就会形成。例如,我们用新玻璃制作镜片。我们不需要经过漫长的研磨和抛光过程,只需将一滴水滴在表面上,仅通过调节溶液量就能控制其曲率,进而控制其焦距。"TAU 的创新玻璃具有世界上独一无二的特性,这些特性甚至相互矛盾:它非常坚硬,但在室温下可以自我修复;它是一种强力粘合剂,同时在从可见光到中红外线的宽光谱范围内都是透明的。"这是第一次有人成功地在简单条件下制造出分子玻璃,"Gazit 教授说,"但比这更重要的是我们制造出的玻璃的特性。这是一种非常特殊的玻璃。一方面,它非常坚固,另一方面,它非常透明,比普通玻璃透明得多。我们都知道,普通的硅酸盐玻璃在可见光范围内是透明的,而我们创造的分子玻璃在红外线范围内是透明的。这在卫星、遥感、通信和光学等领域有很多用途。它还是一种强力粘合剂,可以把不同的玻璃粘在一起,同时还能修复玻璃上形成的裂缝。这是世界上任何玻璃都不具备的一系列特性,在科学和工程领域具有巨大的潜力,而我们从一个肽一小块蛋白质中获得了这一切。"编译自/ScitechDaily ... PC版: 手机版:

封面图片

普京称俄罗斯即将研制出癌症疫苗

普京称俄罗斯即将研制出癌症疫苗 俄罗斯总统普京周三表示,俄罗斯科学家即将研制出癌症疫苗,很快就能提供给患者。普京在电视讲话中表示,“我们已经非常接近研制出所谓的新一代癌症疫苗和免疫调节药物,我希望它们很快就能有效地用作个体治疗方法。”普京没有具体说明拟议的疫苗将针对哪种类型的癌症,也没有具体说明如何针对。

封面图片

科学家利用LBO晶体研制出最强大的紫外激光器

科学家利用LBO晶体研制出最强大的紫外激光器 DUV光谱中的激光器已经在科学技术中有许多应用,如缺陷检测、光谱学、光刻和计量学。传统上,氟化氩(ArF)激光器已被用于产生高功率193nm激光器,用于光刻等应用。DUV激光器的其他应用包括微电子设备的生产,半导体集成电路,以及用于进行眼科手术的医学。在这些应用中,它通常被称为准分子激光器。然而,这些激光器不是完全相干的,因此不能用于更敏感的应用,如干涉光刻,在这种应用中,精细的特征必须以阵列的形式印刷。如此精细的应用需要更加相干的激光器,这为研究人员制造混合准分子激光器提供了机会。什么是混合准分子激光器?为了达到相干性要求,科学家们一直在考虑用固态种子代替气体(ArF)振荡器,使其成为混合激光器。除了提高相干性外,该设计还旨在提高激光的光子能量,使其甚至可以与碳化合物一起使用,并且产生最小的热影响。为了实现这一目标,193nm种子激光器的线宽需要保持在4千兆赫以下。声明称,这是通过使用目前可用的固态激光技术看到的对干涉至关重要的相干长度。在DUV激光器上取得了什么成果?中国科学院的研究人员通过使用LBO晶体实现了与193纳米混合准分子激光器相同的线宽。在他们的装置中,研究人员使用了一种复杂的两阶段和频率产生过程来实现60毫瓦(60兆瓦)的激光输出。该装置包括两个激光器,一个是258纳米,另一个是1553纳米。这些激光器分别来自镱混合激光器和掺铒光纤激光器,最终形成2mm×2mm×30mm Yb: YAG体晶体,提供所需的激光输出。由此产生的DUV激光脉冲持续时间为4.6纳秒(ns),重复频率为6千赫兹(kHz),线宽约为640兆赫(MHz)。值得注意的是,193nm激光器及其伴随的221nm激光器的输出功率为60mW,这是使用LBO晶体产生的最高功率。221-193nm转换效率为27%,258 - 193nm转换效率为3%,也创下了新的基准。这一研究证明了“用固态激光器泵浦LBO的可行性,可以可靠有效地产生193nm的窄线宽激光,并为使用LBO制造成本效益高的大功率DUV激光系统开辟了一条新途径。”因此,研究人员相信,LBO晶体可以用于产生更多的DUV激光器,输出功率从几毫瓦到几瓦不等,为这些波长开辟了进一步的途径。这项研究结果发表在《高级光子联系》(Advanced Photonic Nexus)杂志上。 ... PC版: 手机版:

封面图片

科学家找出导致电池故障的幽灵般的元凶:软短路

科学家找出导致电池故障的幽灵般的元凶:软短路 阿贡团队的研究重点是全固体电池,其阳极(负极)由锂金属制成。许多人将这种设备视为电池技术的"圣杯"。为什么这么说呢?因为锂金属可以在很小的空间内储存大量电荷。这意味着,与传统的石墨阳极锂离子电池相比,它能使电动汽车的行驶里程更长。然而,锂金属会与传统电池中的液态电解质发生高度反应,这给操作带来了挑战。电解质是在电池的两个电极之间移动被称为离子的带电粒子的材料,可将储存的能量转化为电能。正常工作的电池放电时,离子从阳极通过电解质流向阴极(正极),与此同时,电子从阳极流向外部设备(如手机或电动汽车电机),然后返回阴极。电子流为设备供电。当电池充电时,电子流会反向流动。锂金属的使用往往会破坏这一过程,在充电过程中,锂枝晶会从阳极生长出来并渗入电解液。如果这些枝晶长得足够大并一直延伸到阴极,它们就会在电极之间形成一条永久性的"导线"。最终,电池中的所有电子都会通过这根线从一个电极流向另一个电极,而不会流出电池为设备供电,这一过程也会阻止离子在电极之间流动。"这就是所谓的内部短路,"阿贡博士后、团队首席研究员迈克尔-坎尼汉(Michael Counihan)说,电池发生故障后就不再为设备供电。将锂金属阳极置于固态电池中(换句话说,就是使用固态电解质的电池),有可能减少与枝晶相关的挑战,同时还能保留锂的优点。阿贡团队正在开发一种用于电动汽车电池的新型固体电解质,并注意到了一种不寻常的行为。"当我们在实验室中操作电池时,我们观察到了非常小、非常短暂的电压波动,"Counihan 说。我们决定进行更深入的研究。研究人员对电池进行了数百小时的反复充电和放电,并测量了电压等各种电气参数。研究小组确定,电池正在经历软短路,这是一种微小的暂时性短路。软短路时,枝晶会从阳极向阴极生长。但增长量比永久短路时要小。一些电子留在电池内部,另一些则可能流向外部设备。电极之间的离子流可能会继续流动。所有这些流动都会发生很大的变化。研究小组与阿贡计算专家合作开发了模型,用于预测软短路过程中的离子流和电子流数量。这些模型考虑到了枝晶尺寸和电解质特性等因素。带有软短路的电池可以持续工作数小时、数天甚至数周。但阿贡研究小组发现,随着时间的推移,枝晶的数量通常会增加,最终导致电池失效。Counihan说:"软短路是通向电池永久故障悬崖的第一步。"动态行为研究小组的进一步研究发现,软短路具有非常动态的行为。它们往往在短短的微秒或毫秒内形成、消失和重组。Counihan说:"这对电池研究人员来说是一个重要的启示。在实验室进行典型的电池测试时,研究人员可能每隔一分钟左右才测量一次电压。在这段时间里,电池可能会错过成千上万软短路的形成和死亡。它们就像一个个小幽灵,在不知不觉中破坏着电池。"软短路最常见的原因是发热。当电子流经枝晶时,会产生热量,类似于家用电器电线的发热,热量会迅速融化,尤其是在周围电解液具有隔热性能的情况下。当枝晶与某些电解质发生反应时,软短路就会溶解,阿贡研究小组正在研究的某些固体电解质会在枝晶到达阴极之前将其切断,从而导致内部短路。在对软短路进行广泛研究的过程中,阿贡团队开发并演示了几种检测和分析软短路现象的新方法。例如,一种方法可以量化软短路对电池电流阻力的影响程度。由于不同的电池组件都可能造成这种阻力,因此分离出软短路造成的阻力可以帮助研究人员更好地评估电池的健康状况。这项研究最近发表在《焦耳》(Joule)杂志上,其中包括近 20 种检测和分析技术。其中约三分之一的方法来自该团队最近的研究。研究报告的作者从研究界非正式的、未发表的知识中收集了其他方法。Counihan说:"我们意识到,文献中没有一篇论文使用了其中两种以上的技术。为了让这份清单对研究人员更有用,我们加入了关于每种方法优缺点的信息。由于软短线的动态性很强,因此对于研究人员来说,有很多工具可以使用,以便更好地了解软短线的影响。"研究小组希望为世界各地的研究人员提供有关软短路的见解,为他们的工作提供参考。例如,论文中的技术可以帮助推进阻止枝晶生长的硬固体电解质的设计。Counihan说:"当研究人员了解电池中软短路的动态时,他们就能更好地改进材料,避免这些失效途径。"参考文献:Michael J. Counihan、Kanchan S. Chavan、Pallab Barai、Devon J. Powers、Yuepeng Zhang、Venkat Srinivasan 和 Sanja Tepavcevic 合著的《固态电池研究中动态软短路的幽灵威胁》,2023 年 12 月 6 日,《焦耳》。DOI: 10.1016/j.joule.2023.11.007编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人