研究人员新发现18起黑洞吞噬恒星事件

研究人员新发现18起黑洞吞噬恒星事件 美国麻省理工学院近日发布公报说,该校研究人员领衔的团队在距地球6亿光年范围内新发现了18起黑洞吞噬恒星的潮汐瓦解事件,使附近宇宙空间中已知的这类事件数量增加了一倍多。 相关论文发表在新一期美国《天体物理学杂志》上。 新华社报道,潮汐瓦解事件(Tidal disruption event)是宇宙中一种高能爆发现象,即恒星距离超大质量黑洞过近时,被黑洞产生的潮汐力吸入并撕裂的事件。当黑洞享用“恒星盛宴”时,会在电磁波谱多个波段释放巨大能量。此前,科学家主要通过在可见光和X射线波段寻找具有典型特征的爆发来探测潮汐瓦解事件,并已经在地球附近的宇宙中发现十几起这类事件。 这项新研究利用红外观测数据从星系中找到更多这类事件。研究人员对美国广域红外线巡天探测卫星所获的观测数据进行了分析,利用特定算法识别出来自约1000个星系的红外爆发信号,这些星系分布在距地球六亿光年范围内。随后,研究人员放大了上述每个星系的红外爆发信号,从中寻找符合潮汐瓦解事件特征的红外辐射模式,最终发现18个清晰的潮汐瓦解事件信号。 研究人员说,新发现有助于解答关于潮汐瓦解事件研究的几个关键问题。过去,潮汐瓦解事件大多在所谓的“星暴后星系”中观测到,这是一类曾因大量恒星形成而“光芒四射”但之后已冷却下来的罕见星系。这项新研究在尘埃星系等其他类型的星系中发现了潮汐瓦解事件,表明黑洞可以吞噬一系列星系中的恒星,而不仅仅是“星暴后星系”中的恒星。 研究结果还解释了“能量缺失”问题。物理学家曾从理论上预测,潮汐瓦解事件辐射的能量应比实际观测到的更多。该研究认为,如果潮汐瓦解事件发生在尘埃星系中,或许可以解释这种能量差异。尘埃不仅可以吸收可见光和X射线,还可以吸收极紫外波段辐射,其吸收的能量相当于预测的“缺失能量”。 此外,研究人员将新发现的潮汐瓦解事件与此前观测结果结合起来估计,一个星系大约平均每五万年就会经历一次黑洞吞噬恒星的潮汐瓦解事件。 2024年2月6日 3:29 PM

相关推荐

封面图片

研究人员新发现18起黑洞吞噬恒星事件

研究人员新发现18起黑洞吞噬恒星事件 美国麻省理工学院近日发布公报说,研究人员领衔的团队在距地球6亿光年范围内新发现了18起黑洞吞噬恒星的潮汐瓦解事件,使附近宇宙空间中已知的这类事件数量增加了一倍多。

封面图片

美国麻省理工学院近日发布公报说,该校研究人员领衔的团队在距地球6亿光年范围内新发现了18起黑洞吞噬恒星的潮汐瓦解事件,使附近宇宙

美国麻省理工学院近日发布公报说,该校研究人员领衔的团队在距地球6亿光年范围内新发现了18起黑洞吞噬恒星的潮汐瓦解事件,使附近宇宙空间中已知的这类事件数量增加了一倍多。 相关论文发表在新一期美国《天体物理学杂志》上。 新华社报道,潮汐瓦解事件(Tidal disruption event)是宇宙中一种高能爆发现象,即恒星距离超大质量黑洞过近时,被黑洞产生的潮汐力吸入并撕裂的事件。当黑洞享用“恒星盛宴”时,会在电磁波谱多个波段释放巨大能量。此前,科学家主要通过在可见光和X射线波段寻找具有典型特征的爆发来探测潮汐瓦解事件,并已经在地球附近的宇宙中发现十几起这类事件。 这项新研究利用红外观测数据从星系中找到更多这类事件。研究人员对美国广域红外线巡天探测卫星所获的观测数据进行了分析,利用特定算法识别出来自约1000个星系的红外爆发信号,这些星系分布在距地球六亿光年范围内。随后,研究人员放大了上述每个星系的红外爆发信号,从中寻找符合潮汐瓦解事件特征的红外辐射模式,最终发现18个清晰的潮汐瓦解事件信号。 此外,研究人员将新发现的潮汐瓦解事件与此前观测结果结合起来估计,一个星系大约平均每五万年就会经历一次黑洞吞噬恒星的潮汐瓦解事件。 标签: #黑洞 频道: @GodlyNews1 投稿: @GodlyNewsBot

封面图片

麻省理工学院天文学家发现18个吞噬附近恒星的黑洞

麻省理工学院天文学家发现18个吞噬附近恒星的黑洞 天文学家通过寻找光学和 X 射线波段的特征爆发,探测到了以前发生过的潮汐破坏事件。迄今为止,这些搜索已经揭示了附近宇宙中大约十几个恒星粉碎事件。麻省理工学院研究小组新发现的潮汐扰动事件比宇宙中已知的潮汐扰动事件多了一倍多。研究人员通过一个非常规波段:红外线发现了这些以前"隐藏"的事件。除了发出光学和X射线暴之外,TDEs还能产生红外辐射,尤其是在"多尘"星系中,在这些星系中,中心黑洞被星系碎片所笼罩。这些星系中的尘埃通常会吸收和遮蔽光学和X射线光,以及这些波段中的任何TDEs迹象。在此过程中,尘埃也会升温,产生可探测到的红外辐射。研究小组发现,红外线辐射可以作为潮汐扰动事件的标志。通过红外波段的观察,麻省理工学院的研究小组在以前隐藏着此类事件的星系中发现了更多的TDEs。这 18 个新事件发生在不同类型的星系中,分散在整个天空中。麻省理工学院的科学家们发现了18个新的潮汐扰动事件(TDEs)即附近恒星被潮汐卷入黑洞并被撕成碎片的极端情况。这些发现是附近宇宙中已知 TDEs 数量的两倍多。图片来源:研究人员提供,经《麻省理工新闻》编辑第一作者、麻省理工学院卡弗里天体物理学和空间研究所研究生梅根-马斯特森说:"这些来源中的大多数并没有在光学波段中显示出来。如果想从整体上了解TDEs,并用它们来探测超大质量黑洞的人口结构,就需要在红外波段进行观察"。"麻省理工学院的其他作者包括 Kishalay De、Christos Panagiotou、Anna-Christina Eilers、Danielle Frostig 和 Robert Simcoe,以及麻省理工学院物理学助理教授 Erin Kara,还有来自德国马克斯-普朗克地外物理研究所等多个机构的合作者。热量峰值研究小组最近通过红外观测发现了距离最近的 TDE。这一发现为天文学家寻找主动觅食的黑洞开辟了一条基于红外线的新途径。这一首次发现促使研究小组开始寻找更多的 TDE。在新的研究中,研究人员搜索了NEOWISENASA宽视场红外巡天探测器的更新版所拍摄的档案观测数据。这颗卫星望远镜于 2009 年发射升空,在短暂的停顿之后,它继续扫描整个天空,寻找红外线"瞬变"或短暂爆发。研究小组利用合著者 Kishalay De 开发的算法查看了任务的存档观测数据。该算法能从红外辐射中找出可能是红外辐射瞬时爆发迹象的模式。然后,研究小组将标记的瞬态辐射与 200 兆帕/秒(或 6 亿光年)范围内所有已知附近星系的星表进行交叉对比。他们发现,红外线瞬变可以追溯到大约 1000 个星系。然后,他们放大了每个星系的红外线爆发信号,以确定该信号是否来自TDE以外的其他来源,如活动星系核或超新星。在排除了这些可能性之后,研究小组又对剩余的信号进行了分析,寻找一种具有TDE特征的红外线模式即一个急剧的尖峰之后是一个逐渐下降的过程,这反映了黑洞在撕裂恒星的过程中突然将周围的尘埃加热到大约1000开尔文,然后逐渐冷却下来的过程。这项分析发现了 18 个"干净"的潮汐扰动事件信号。研究人员对发现每个潮汐破坏事件的星系进行了调查,发现它们发生在整个天空的一系列星系中,包括尘埃星系。马斯顿说:"如果你仰望天空,看到一堆星系,那么TDE就会有代表性地出现在所有星系中。这并不是说,它们只出现在一种类型的星系中,而人们只是根据光学和X射线的搜索结果这么认为的"。"哈佛大学天文学教授埃多-伯杰(Edo Berger)说:"现在我们有可能透过尘埃,完成对附近TDE的普查。这项工作特别令人兴奋的一点是,大型红外巡天观测的后续研究潜力巨大,我很期待看到它们会有什么发现"。"扩大对潮汐扰动事件的了解研究小组的发现有助于解决潮汐扰动事件研究中的一些重大问题。例如,在这项工作之前,天文学家主要是在一种星系中看到潮汐破坏现象一种"后星爆"星系,这种星系以前是恒星形成工厂,但后来沉寂了下来。这种星系类型非常罕见,天文学家们感到困惑的是,为什么TDEs似乎只在这些罕见的星系中出现。碰巧的是,这些星系也相对缺乏尘埃,因此TDE的光学或X射线辐射自然更容易被探测到。现在,通过红外波段的观察,天文学家能够在更多的星系中看到TDEs。研究小组的新成果表明,黑洞可以吞噬一系列星系中的恒星,而不仅仅是后星爆星系。这些发现还解决了一个"能量缺失"的问题。物理学家从理论上预测,TDE 辐射的能量应该比实际观测到的更多。但麻省理工学院的研究小组现在说,尘埃可能可以解释这种差异。他们发现,如果TDE发生在多尘星系中,尘埃本身不仅会吸收光学和X射线辐射,还会吸收极紫外线辐射,其吸收量相当于推测的"缺失能量"。这18次新的探测还有助于天文学家估算特定星系中发生潮汐破坏事件的频率。当他们把新的 TDE 与之前的探测结果相比较时,他们估计一个星系每 5 万年就会发生一次潮汐破坏事件。这个频率更接近物理学家的理论预测。通过更多的红外观测,研究小组希望能够解析潮汐破坏事件的发生率,以及引发潮汐破坏事件的黑洞的特性。卡拉说:"人们对这些谜题提出了非常奇特的解决方案,而现在我们已经到了可以解决所有谜题的地步。这给了我们信心,我们不需要所有这些奇异的物理学来解释我们所看到的一切。我们对恒星如何被黑洞撕裂和吞噬背后的力学原理有了更好的了解。我们正在更好地理解这些系统。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员在类星体宿主星系中发现了恒星形成受抑制的证据

研究人员在类星体宿主星系中发现了恒星形成受抑制的证据 类星体研究取得突破由北海道大学的德拉甘-萨拉克(Dragan Salak)助理教授、筑波大学的桥本拓也(Takuya Hashimoto)助理教授和早稻田大学的井上明夫(Akio Inoue)教授领导的研究小组首次发现了宇宙早期类星体宿主星系中的分子气体外流抑制恒星形成的证据。他们利用智利阿塔卡马大型毫米波/亚毫米波阵列(ALMA)进行的观测结果发表在《天体物理学报》上。从类星体 J2054-0005 喷出的分子气体的艺术印象。资料来源:ALMA (ESO/NAOJ/NRAO)分子气体在星系中的作用分子气体对恒星的形成至关重要。作为恒星形成的主要燃料,星系内无处不在的高浓度分子气体会导致大量恒星的形成。分子外流将这些气体喷射到星系际空间的速度快于恒星形成所消耗的速度,从而有效地抑制了类星体所在星系中恒星的形成。萨拉克解释说:"理论研究表明,分子气体外流从早期就在星系的形成和演化过程中发挥着重要作用,因为它们可以调节恒星的形成。类星体是能量特别高的来源,因此我们预计它们可能会产生强大的外流"。一组正在观测夜空的 ALMA 12 米天线。本研究使用 12 米天线进行观测。资料来源:ESO/Y.Beletsky发现分子气体外流研究人员观测到的类星体 J2054-0005 具有非常高的红移它和地球之间的移动速度显然非常快。桥本说:"J2054-0005 是遥远宇宙中最亮的类星体之一,因此我们决定把这个天体作为研究强大外流的绝佳候选天体。研究人员利用 ALMA 观测了类星体的分子气体外流。作为世界上唯一具有探测早期宇宙中分子气体外流的灵敏度和频率覆盖范围的望远镜,ALMA 是这项研究的关键。"谈到研究中使用的方法,Salak 评论道:"外流分子(OH)气体是通过吸收发现的。这意味着我们观测到的微波辐射并非直接来自OH分子;相反,我们观测到的辐射来自明亮的类星体吸收意味着OH分子恰好吸收了类星体的部分辐射。因此,这就像是通过看到气体在光源前投下的'影子'来揭示气体的存在"。类星体流出的分子气体包括羟基(OH)(上图)。由于分子气体向观测者方向运动,吸收光谱中的羟基峰(底部,蓝色虚线)出现在较短的波长上(蓝色实线),这种现象被称为多普勒效应。资料来源:ALMA(ESO/NAOJ/NRAO),修改自 Dragan Salak 等人,《天体物理学杂志》。2024 年 2 月 1 日对星系演化的影响这项研究的发现首次有力地证明了类星体宿主星系存在强大的分子气体外流,并对早期宇宙时代的星系演化产生影响。"分子气体是星系的重要组成部分,因为它是恒星形成的燃料,"Salak 总结道。"我们的研究结果表明,类星体能够通过将分子气体喷射到星系际空间来抑制其宿主星系中恒星的形成。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

距地球3.6亿光年超大黑洞苏醒 开始吞噬周围一切物质

距地球3.6亿光年超大黑洞苏醒 开始吞噬周围一切物质 研究称,这个超大黑洞位于SDSS1335+0728星系,距离地球大约3.6亿光年;星系直径约为5.2万光年,总质量相当于100亿个太阳大小。参与研究的欧美科学家称,黑洞所在的星系在过去数十年均未出现异常,直到2019年12月,美国科学家发现该黑洞所在星系亮度突然上升。而该星系的亮度,是由其中的超大质量黑洞驱动的,黑洞以SDSS1335+0728星系周围的气体为食时,不断增长的物质被黑洞拉了进来,使星系发光。并且,黑洞能够吞噬一切物质,如果一颗恒星运动到其附近,可能会被强大的潮汐力所撕裂并被吸积,被“吞噬/撕裂”,这种现象称作黑洞潮汐撕裂恒星事件。至于是什么触发了这次黑洞的觉醒,目前科学界尚无定论。有理论认为,这可能是星系生命周期中自然发生的活跃周期,可能涉及恒星接近并落入黑洞的事件。此外,银河系中心的人马座A*,也存在着一个距离我们约2.6万光年、质量为太阳400万倍的超大质量黑洞,目前相对平静,不过,不排除未来它也会发生类似觉醒的可能。 ... PC版: 手机版:

封面图片

韦伯发现带有大质量黑洞的早期星系 曾被认为是不可能存在的

韦伯发现带有大质量黑洞的早期星系 曾被认为是不可能存在的 恒星形成率和黑洞增长随着红移的减小而发生的转变,从正反馈占主导地位的时期到后期反馈基本为负的时期这架望远镜的红外探测"眼睛"发现了一系列红色小点,它们被确认为宇宙中最早形成的星系。这一惊人的发现不仅仅是一个视觉奇迹,它还是一条线索,可以揭开星系及其神秘黑洞如何开始宇宙之旅的秘密。"詹姆斯-韦伯的惊人发现是,宇宙中不仅有这些非常紧凑的红外明亮天体,而且它们很可能是已经存在巨大黑洞的区域,"JILA 研究员、科罗拉多大学博尔德分校天体物理学教授米奇-贝格尔曼解释说。"这被认为是不可能的"。贝格尔曼和包括约翰-霍普金斯大学天文学教授乔-希尔克在内的其他天文学家组成的研究小组在《天体物理学杂志通讯》上发表了他们的发现,认为需要新的星系生成理论来解释这些巨大黑洞的存在。这项可能具有开创性的研究的第一作者西尔克阐述说:"需要一些新的东西来协调星系形成理论与新数据之间的关系。"星系形成的传统故事天文学家以前在思考星系是如何形成的时候,曾假定星系是一种有序的演化过程。传统理论认为,星系是在数十亿年的时间里逐渐形成的。在这种缓慢的宇宙演化过程中,恒星被认为首先出现,照亮了原始的黑暗。贝格尔曼补充说:"我们的想法是,从早期的恒星到星系真正成为以恒星为主的星系。然后,在这个过程的末期开始形成这些黑洞。"这些神秘而强大的超大质量黑洞被认为出现在第一批恒星之后,静静地生长在银河系的核心。它们被视为调节器,偶尔会突然爆发,以抑制新恒星的形成,从而维持银河系的平衡。挑战传统智慧得益于 JWST 对"小红点"的观测,研究人员发现宇宙中最早的星系比预期的要明亮,因为许多星系显示恒星与被称为类星体的中心黑洞共存。"类星体是宇宙中最亮的天体,"西尔克解释说。"它们是气体吸积到星系核中的大质量黑洞上的产物,产生巨大的光度,比它们的宿主星系还要耀眼。它们就像布谷鸟巢中的怪兽。"看到恒星与黑洞共存,研究人员很快意识到,传统的星系形成理论肯定有缺陷。贝格尔曼说:"[这些新数据]看起来[过程]是相反的,这些黑洞与第一批恒星一起形成,然后星系的其他部分随之形成。"我们的意思是说,黑洞的生长一开始会促进恒星的生长。只有到了后来,当条件发生变化时,它才会转变为关闭恒星的模式。"从这一拟议的新过程中,研究人员发现恒星形成和黑洞形成之间的关系似乎比预期的更密切,因为两者最初都通过一种被称为正反馈的过程放大了对方的增长。希尔克说:"恒星的形成加速了大质量黑洞的形成,反之亦然,暴力、诞生和死亡之间的相互作用密不可分,这是星系形成的新航标。"然后,经过将近 10 亿年的时间,孕育巨星的星系变得具有压制性,耗尽了星系中的气体库,熄灭了恒星的形成。这种"负反馈"是由于能量守恒的外流强大的风把气体赶出了星系,使它们失去了创造新恒星所需的物质。新银河系时间轴有了黑洞哺育行为的启示,研究人员为早期星系形成过程中从正反馈到负反馈的转变提出了一个新的时间表。通过观察这些"小红点"发出的不同光谱和化学特征,研究人员认为这种转变发生在大约130亿年前,即宇宙大爆炸后10亿年,天文学家将这一时期归类为"z ≈6"。确定这一过渡纪元有助于天文学家瞄准宇宙历史上的特定时期进行观测。它可以指导未来的观测策略,利用 JWST 等望远镜更有效地研究早期宇宙。此外,通过了解这一转变发生的时间,天文学家可以更好地理解现代星系的特征,包括大小、形状、恒星组成和活动水平。验证新工艺为了验证恒星和黑洞之间协同形成星系的新理论,并进一步深入了解其中的过程,需要进行计算机模拟。贝格尔曼说:"这需要一些时间。目前的计算机模拟相当原始,你需要高分辨率来了解一切。这需要大量的计算能力,而且价格昂贵。"在此之前,天文学界还可以采取其他措施来审查和验证这一新理论。下一步的工作将是改进观测。JWST研究最遥远星系光谱的全部能力将在未来几年内释放出来。贝格尔曼和西尔克都对他们领域的其他成员采用他们提出的想法表示乐观。贝格尔曼补充说:"据我所知,我们是第一个朝着这个极端方向前进的人。多年来,我和我的合作者们一直在研究黑洞的形成问题。但 JWST 让我们看到,我们还没有跳出框框。"编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人