日本研究人员成功在较低温度下分解聚乙烯塑料

日本研究人员成功在较低温度下分解聚乙烯塑料 日本东京大学研究人员成功实现了在较低温度环境下分解聚乙烯塑料。 新华社报道,分解聚乙烯、聚丙烯等塑料材料通常需要300摄氏度以上的高温条件,能源消耗较多。日本东京大学日前发布新闻公报说,研究人员在铈的催化作用下,利用可见光照射含少量羧基的聚乙烯,成功实现在80摄氏度的较低温度环境下令这种聚乙烯分解。 产生碳自由基是引发碳-碳键断裂的关键。东京大学研究团队将少量羧基官能团引入聚乙烯,然后针对这种羧化聚乙烯粉末,摸索能令羧基在光照射下产生碳自由基的反应条件。 东京大学说,塑料废弃物导致的环境污染日益成为严重的社会问题,特别是生产量大的聚乙烯和聚丙烯等塑料材料的回收利用是亟待解决的问题。但聚乙烯和聚丙烯分子链包含的碳-碳键非常稳定,进行分解一般需要300摄氏度以上的高温条件。 研究发现,在添加少量铈催化剂的80摄氏度乙腈中,用发光波长为430纳米的LED灯照射羧化聚乙烯粉末,可使羧基生成碳自由基,并且其高反应性切断了聚乙烯分子链上的碳-碳键,长链羧化聚乙烯分子被降解成分子量约500的片段。研究还确认,这一反应不仅能在乙腈中进行,在水中也能发生。 相关论文已发表在《美国化学学会杂志》上。公报说,本项研究在较低温度环境下实现了通常需要高温条件的聚乙烯分解,表明经羧基官能团修饰的聚乙烯将来有望作为可降解塑料使用,这将使回收利用更加节能、低成本。 2024年7月10日 12:55 PM

相关推荐

封面图片

日本研究人员成功在较低温度下分解聚乙烯塑料

日本研究人员成功在较低温度下分解聚乙烯塑料 分解聚乙烯、聚丙烯等塑料材料通常需要 300 摄氏度以上的高温条件,能源消耗较多。日本东京大学日前发布新闻公报说,该校研究人员在铈的催化作用下,利用可见光照射含少量羧基的聚乙烯,成功实现在 80 摄氏度的较低温度环境下令这种聚乙烯分解。

封面图片

【新研究:蜡虫唾液酶可轻易分解聚乙烯塑料】英国路透社报道,蜡虫唾液中的两种物质能够轻易分解一种常见塑料,全球应对塑料污染的斗争有

【新研究:蜡虫唾液酶可轻易分解聚乙烯塑料】英国路透社报道,蜡虫唾液中的两种物质能够轻易分解一种常见塑料,全球应对塑料污染的斗争有望取得进展。蜡虫是一种名为蜡螟的蜡蛾的幼虫。研究人员说,在这种虫的唾液中发现的两种酶可以在室温下迅速降解聚乙烯,这一步可在数小时内完成。 #月光新资讯

封面图片

研究人员在人类睾丸组织中发现微塑料

研究人员在人类睾丸组织中发现微塑料 微塑料通常指直径小于5毫米的塑料颗粒,可经由食物甚至呼吸进入人体。美国新墨西哥大学研究人员先前在人类胎盘样本中发现微塑料,后来用同样的实验方法设计了这项新实验。他们经由医学调查部门取得23份来自男性遗体的睾丸样本,从兽医诊所等处搜集到47份来自接受绝育手术公狗的睾丸样本,经化学处理溶解掉脂肪和蛋白质,结果在每份样本中均发现了微塑料。美国有线电视新闻网21日援引论文合著者、新墨西哥大学药学教授马修·坎彭的话报道,这些微塑料“通常为纳米级,一般长度不到半微米,宽度可能在20至200纳米之间”。专家介绍,如此微小的颗粒可以侵入主要器官的单个细胞和组织,扰乱细胞进程,还可能令干扰内分泌的化学物质积聚下来,而这些化学物质会干扰生殖系统。研究人员经测量发现,狗平均每克睾丸组织含有122.63微克微塑料,而在人的睾丸组织中这一数据为329.44微克,不仅比狗高,也明显高于先前在胎盘组织中发现的平均浓度。他们还在睾丸组织中鉴定出12种微塑料。其中,在狗和人类样本中出现最多的聚合物是聚乙烯。这是目前世界上使用最广泛的一种塑料,稳定性很高,难以自然降解。狗样本中,出现第二多的是另一种常见塑料聚氯乙烯。所有样本中均有微塑料,PE、PVC是主要类型由于人类样本获取方式的特殊性,精子已遭到严重破坏,无法估算数量,研究人员只能估算狗样本中的精子数量。结果显示,聚氯乙烯浓度较高关联精子数量较少。不过,研究人员没有在狗样本中发现聚乙烯浓度与精子数量间存在关联。依据研究人员说法,不同种类的塑料影响不同。聚氯乙烯含有可导致内分泌紊乱的化学物质,还会释放出许多干扰精子形成的化学物质。研究人员介绍,这项实验之所以将人类和狗的组织进行比对,原因之一是许多人与狗共同生活,生活环境几乎相同。另外,相较于老鼠等动物,狗在一些生物学特征上也“更接近人类”,比如精子的形成和浓度。值得注意的是,样本中男性死亡时平均年龄为35岁,而这些人在世接触塑料的年代,所流通的塑料相对较少。如今环境中塑料已大幅增加,“对年轻一代的影响可能更令人担忧”。研究人员希望人们能改变生活方式和行为,尽量减少对塑料的不必要接触。DOI: 10.1093/toxsci/kfae060 ... PC版: 手机版:

封面图片

南洋理工大学研究人员发明人造"蠕虫肠道"吞噬塑料垃圾

南洋理工大学研究人员发明人造"蠕虫肠道"吞噬塑料垃圾 南洋理工大学的科学家们用不同的塑料食物喂养蠕虫,并从它们的肠道中提取微生物组,将它们放在烧瓶中培养,形成人工"蠕虫肠道"。图片来源:新加坡国立大学南洋理工大学土木与环境工程学院(CEE)和新加坡环境生命科学工程中心(SCELSE)的研究人员通过用塑料喂养蠕虫并培养其内脏中的微生物,展示了一种加速塑料生物降解的新方法。先前的研究表明,面包虫 - 通常作为宠物食品出售、因其营养价值而被称为"超级蠕虫"的黑甲虫的幼虫能够以塑料为食而存活,因为其肠道中含有能够分解常见类型塑料的细菌。然而,由于进食和虫体维持的速度较慢,将它们用于塑料处理一直不切实际。现在,南洋理工大学的科学家们展示了一种克服这些挑战的方法,他们分离出蠕虫的肠道细菌,利用它们来完成这项工作,而无需大规模繁殖蠕虫。(左起)南洋理工大学研究团队成员包括研究员 Sakcham Bairoliya 博士、曹斌副教授和研究员 Liu Yinan 博士。资料来源:新加坡国立大学南洋理工大学电子工程学院副教授、南洋环境科学与工程学院首席研究员曹斌说:"一只蠕虫一生只能消耗几毫克的塑料,因此可以想象,如果我们要依靠它们来处理塑料垃圾,需要多少蠕虫。我们的方法将蠕虫从等式中剔除,从而消除了这种需求。我们的重点是提高蠕虫肠道中有用微生物的数量,并建立一个能够有效分解塑料的人工'蠕虫肠道'"。这项研究最近发表在《国际环境》杂志上,与南洋理工大学 2025 五年战略计划中促进创新并将研究成果转化为造福社会的实际解决方案的承诺相一致。开发人造蠕虫肠道为了开发他们的方法,南洋理工大学的科学家们给三组超级蠕虫喂食了不同的塑料食物高密度聚乙烯(HDPE)、聚丙烯(PP)和聚苯乙烯(PS)为期 30 天。对照组喂食燕麦片。北大科学家之所以选择这些塑料,是因为它们是世界上最常见的塑料之一,用于食品盒和洗涤剂瓶等日常用品。高密度聚乙烯是一种以抗冲击性强、不易分解而著称的塑料。在这些蠕虫内脏中发现的细菌可以分解塑料。资料来源:南洋理工大学在给蠕虫喂食塑料后,科学家从它们的肠道中提取了微生物组,并将它们放在装有合成营养物和不同类型塑料的烧瓶中培养,形成了人工"蠕虫肠道"。在室温下,让微生物组在烧瓶中生长六周。增加塑料降解细菌科学家们发现,与对照组相比,装有喂食塑料的蠕虫肠道微生物群的烧瓶中,塑料降解菌显著增加。此外,与直接喂给蠕虫的塑料上的微生物相比,在烧瓶中塑料上定植的微生物群落更简单,更适合特定类型的塑料。当微生物群落更简单且针对特定类型的塑料时,在实际应用中就有可能更有效地降解塑料。该研究的第一作者、中欧和东欧环境与工程学院研究员刘一楠博士说:"我们的研究是首次成功尝试从喂食塑料的蠕虫肠道微生物组中培养塑料相关细菌群落。通过将肠道微生物组置于特定条件下,我们能够提高人工'蠕虫肠道'中塑料降解细菌的丰度,这表明我们的方法是稳定的,可以大规模复制。"研究人员说,他们的概念验证为开发利用蠕虫肠道微生物群处理塑料垃圾的生物技术方法奠定了基础。下一步,研究人员希望了解超级蠕虫肠道中的细菌如何在分子水平上分解塑料。了解这一机制将有助于科学家们在未来设计塑料降解细菌群落,从而高效地分解塑料。编译自:ScitechDaily ... PC版: 手机版:

封面图片

日本研究人员找到将塑料垃圾转化为化学宝藏的突破性新方法

日本研究人员找到将塑料垃圾转化为化学宝藏的突破性新方法 北海道大学的研究人员开发出了一种开创性的方法,通过利用塑料废弃物引发自由基链式反应来解毒有害化学物质,从而实现塑料废弃物的再利用。这种方法既提高了安全性和效率,又解决了塑料垃圾的环境问题,为可持续发展和具有经济吸引力的化学工艺铺平了道路。艺术想象图描绘了从塑料纤维中产生的被称为自由基的极高活性分子。图片来源:Koji Kubota 和 Hajime Ito北海道大学化学反应设计与发现研究所(WPI-ICReDD)的研究人员领导的研究小组开发出一种方法,利用普通塑料材料而不是潜在的爆炸性化合物来引发自由基链式反应。这种方法大大提高了过程的安全性,同时还提供了一种重新利用聚乙烯和聚醋酸乙烯等普通塑料的方法。这些研究成果已发表在《美国化学学会杂志》上。(上图)利用机械力引发自由基链式反应的一般方案。(下图)利用杂货袋碎片在球磨罐中引发反应。资料来源:Koji Kubota 等人,《美国化学学会杂志》。2023 年 12 月 22 日研究人员利用球磨机(一种在钢罐中快速摇动钢球以混合固体化学物质的机器)进行研究。当钢球撞击塑料时,机械力会打破化学键,形成自由基,自由基具有高活性的非键电子。这些自由基促进了自我维持的链式反应,从而促进了有机卤化物的脱卤反应,即用氢原子取代卤原子。"使用商品塑料作为化学试剂是有机合成的一个全新视角,"Koji Kubota 副教授说。"我相信,这种方法不仅能开发出安全、高效的基于自由基的反应,还能为利用废塑料这一严重的社会问题提供新的途径"。北海道大学化学反应设计与发现研究所(WPI-ICReDD)研究团队的 Koji Kubota 副教授(左)和 Hajime Ito 教授(右)。资料来源:WPI-ICReDD在球磨罐中加入普通杂货袋的塑料碎片并成功进行反应,证明了废塑料的再利用。研究小组还展示了他们的方法可用于处理工业中广泛使用的剧毒多卤化合物。他们利用聚乙烯引发自由基反应,从一种常用于阻燃剂的化合物中去除多个卤原子,从而降低了其毒性。研究人员预计,由于这种方法在成本和安全性方面的优势,它将赢得业界的关注。Hajime Ito 教授评论说:"我们的新方法使用稳定、廉价和丰富的塑料材料作为自由基链式反应的引发剂,在促进开发具有工业吸引力、安全和高效的化学工艺方面具有巨大潜力。"这项研究得到了日本学术振兴会、日本科学技术振兴机构和日本文部科学省的资助。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新回收方法可让聚乙烯废料成为历史

新回收方法可让聚乙烯废料成为历史 一个从事基础研究的国际科学家小组发现了一种将聚乙烯废料(PE)用作原材料的方法。他们通过一种名为光驱动光催化的过程,成功地将其转化为有价值的化学物质。阿德莱德大学纳米技术系主任、化学工程学院能源与催化材料中心主任乔世章教授领导的团队在《科学进展》(Science Advances)杂志上发表了他们的研究成果。乔教授说:"我们利用原子分散金属催化剂,将聚乙烯废塑料高选择性地转化为乙烯和丙酸。采用氧化耦合室温光催化方法,以高选择性将废物转化为有价值的产品。近 99% 的液体产品是丙酸,从而缓解了需要分离复杂产品的相关问题。使用的是可再生太阳能,而不是消耗化石燃料和排放温室气体的工业流程。这种变废为宝的策略主要由四个部分组成,包括塑料废料、水、阳光和利用太阳能促进反应的无毒光催化剂。典型的光催化剂是二氧化钛,其表面有孤立的钯原子"。当今使用的大多数塑料最终都被丢弃,堆积在垃圾填埋场。聚乙烯是世界上使用最广泛的塑料。日常食品包装、购物袋和试剂瓶都是由 PE 制成的。在所有塑料垃圾中,聚乙烯所占比例最大,而且主要被填埋,对全球环境和生态构成威胁。乔教授说:"塑料废弃物是一种尚未开发的资源,可以回收利用并加工成新的塑料和其他商业产品。聚乙烯废料的催化回收利用仍处于早期开发阶段,由于聚合物的化学惰性和反应物分子结构的复杂性所产生的副反应,在实践中具有挑战性。"目前,聚乙烯废料的化学回收是在超过 400 摄氏度的高温下进行的,其产品成分复杂。乙烯是一种重要的化学原料,可进一步加工成各种工业和日用品,而丙酸因其防腐和抗菌特性也需求量很大。该团队的工作旨在应对当代环境和能源挑战,为循环经济做出贡献。它将在进一步的科学研究、废物管理和化学制造中发挥作用。乔教授说:"我们的基础研究提供了一种绿色、可持续的解决方案,既能减少塑料污染,又能利用废弃物生产有价值的化学品,从而实现循环经济。它将启发人们合理设计用于太阳能利用的高性能光催化剂,并有利于太阳能驱动的废物再循环技术的发展"。编译自/scitechdaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人