中国科研团队证实黑洞M87自旋 符合广义相对论

中国科研团队证实黑洞M87自旋 符合广义相对论 中国科研团队首次观测到M87黑洞自旋,这一现象符合爱因斯坦广义相对论的预测。 综合新华社和央视新闻报道,国际期刊《自然》星期三(9月27日)刊发一篇由中国科学家领衔的黑洞研究成果论文,发现M87星系中心黑洞喷流呈现周期性摆动,摆动周期约为11年,振幅约为10度。这是继2019年首张黑洞“甜甜圈”照片和今年4月黑洞全景照片发布后,黑洞研究领域又一成果。 论文第一作者兼通讯作者、之江实验室博士后崔玉竹介绍,科研团队在解析M87黑洞喷流结构过程中,发现M87黑洞喷流呈现周期性摆动,首次为黑洞自旋理论提供观测证据。这一现象符合爱因斯坦的广义相对论预测的“如果黑洞处于旋转状态,会导致参考系拖曳效应”。 云南大学中国西南天文研究所副研究员林伟康表示,虽然自旋是黑洞理论的基础假设,但此前并没有直接观测证据能够证实。此次研究成功地将M87黑洞喷流动力学,与该星系中心超大质量黑洞状态联系起来,为进一步揭开黑洞的神秘面纱提供关键要素。 公开资料显示,被观测到的黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年(一光年约9.46兆公里),质量约为太阳的65亿倍。2019年,科学家首次发布由事件视界望远镜(EHT)拍摄的M87黑洞图像,这是人类历史上首次以照片的形式观测黑洞。

相关推荐

封面图片

天体物理学家利用模型准确预测了观测到的M87黑洞喷流的形态

天体物理学家利用模型准确预测了观测到的M87黑洞喷流的形态 自从发现喷流以来,包括诺贝尔奖获得者罗杰-彭罗斯爵士在内的许多学者都在研究这些神秘现象的形成。目前,有两种主要模型试图解释喷流的形成:"BZ-喷流模型"是以研究人员布兰福德和兹纳杰克的名字命名的,也是目前最有影响力的模型,它认为喷流是通过与黑洞事件视界相连的磁场线从黑洞中提取自旋能量而形成的。与此相反,第二种模型认为喷流是通过从黑洞的吸积盘中提取旋转能量形成的。后者是在黑洞强大引力作用下围绕黑洞旋转的电离气体的集合。第二种模型可以被称为"圆盘-喷流模型"。尽管其他研究人员已经使用 BZ 射流模型模拟了广义相对论准直外流,实际上也就是射流,但还不清楚 BZ 射流模型能否解释观测到的实际射流的形态,包括其拉长的结构、宽度和边缘增亮(即射流边缘附近亮度增加)。为了研究这两个模型的有效性,中国科学院上海天文台袁峰博士领导的一个国际研究小组计算了这两个模型分别预测的位于室女座巨型星系Messier 87(M87)中心的超大质量黑洞的喷流。研究小组随后将计算结果与对M87喷流的实际观测结果进行了比较,后者被记录在事件地平线望远镜(EHT)首次捕捉到的黑洞图像中。研究小组的研究表明,BZ-喷流模型准确地预测了观测到的M87喷流的形态,而圆盘-喷流模型则难以解释观测结果。该研究发表在《科学进展》(Science Advances)上。模型预测图像与观测图像的对比研究小组首先采用了三维广义相对论磁流体力学(GRMHD)模拟来再现M87喷流的结构。为了计算模拟喷流的辐射并将辐射与观测结果进行比较,辐射电子的能谱和空间分布至关重要。研究小组假设电子加速是通过"磁重联"发生的,即磁能转化为动能、热能和粒子加速的过程。根据这一假设,研究小组结合粒子加速研究的结果,利用动力学理论求解了稳态电子能量分布方程。然后,研究小组获得了模拟射流不同区域的电子能量谱和数量密度。在距离核心的三个距离上,由基准模型预测的边缘增亮(实线)及其与观测数据的比较(虚线)将这些信息与吸积模拟(包括磁场强度、气体等离子体温度和速度)相结合,研究小组获得了可以与实际观测结果进行比较的结果。结果显示,BZ-喷流模型预测的喷流形态与观测到的M87喷流形态非常吻合,包括喷流宽度、长度、边缘增亮特征和速度。相比之下,盘状喷流模型的预测结果与观测结果不一致。此外,研究小组还分析了磁再连接过程,发现它是由于M87黑洞吸积盘中的磁场产生的磁爆发造成的。这些爆发对磁场造成了强烈的扰动,这种扰动可以传播很远的距离,从而导致喷流中的磁重联。这项工作弥合了喷流形成动态模型与各种观测到的喷流特性之间的差距,首次证明 BZ 喷射模型解决了喷流的能量问题,也解释了其他观测结果。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

《1.相对论 》

《1.相对论 》 简介:由爱因斯坦提出的理论,分为狭义和广义两部分,揭示了时间、空间与物质运动之间的深刻联系,并提出引力是时空弯曲的效应。该理论革新了人类对宇宙本质的理解,为高精度GPS校准、黑洞研究及宇宙膨胀模型提供了理论基础。 亮点:颠覆经典力学绝对时空观,首次将时空几何与物质能量动态关联;提出质能方程(E=mc²)成为核能开发基石;预言引力波、黑洞等现象并获实验验证,奠定现代天体物理学的核心框架。 标签: #时空一体化 #引力本质 #爱因斯坦质能方程 #现代宇宙学 #高维物理 链接:

封面图片

物理学家提出广义相对论的修正方案 解释引力在宇宙尺度上稍稍减弱的奇特现象

物理学家提出广义相对论的修正方案 解释引力在宇宙尺度上稍稍减弱的奇特现象 在过去的 100 年里,物理学家一直依靠阿尔伯特-爱因斯坦的"广义相对论"来解释引力如何在整个宇宙中起作用。广义相对论被无数次试验和观测证明是准确的,它表明引力不仅影响三个物理维度,还影响第四个维度:时间。该项目的第一作者、滑铁卢数学物理系应届毕业生罗宾-温(Robin Wen)说:"这个引力模型对于从宇宙大爆炸理论到拍摄黑洞的所有工作都至关重要。""但是,当我们试图理解宇宙尺度上的万有引力时,在星系团甚至更远的尺度上,我们遇到了与广义相对论预言明显不一致的地方。就好像引力本身不再完全符合爱因斯坦的理论一样。我们把这种不一致称为'宇宙故障':当距离达到数十亿光年时,引力会变弱约百分之一。"二十多年来,物理学家和天文学家一直在努力创建一个数学模型,以解释广义相对论明显不一致的地方。滑铁卢大学在应用数学家和天体物理学家的跨学科合作下,开展了长期的尖端引力研究。滑铁卢大学天体物理学教授、外围研究所研究员尼耶什-阿夫肖迪(Niayesh Afshordi)说:"近一个世纪前,天文学家发现我们的宇宙正在膨胀。星系距离越远,移动速度越快,以至于它们似乎以接近光速的速度移动,而这正是爱因斯坦理论所允许的最大速度。我们的发现表明,在这些尺度上,爱因斯坦的理论可能也是不够的。"研究小组的"宇宙故障"新模型修改并扩展了爱因斯坦的数学公式,在不影响广义相对论现有成功应用的情况下,解决了一些宇宙学测量不一致的问题。"把它想象成爱因斯坦理论的脚注,"温说。"一旦达到宇宙尺度,就会出现条件。这个新模型可能只是我们开始跨越时空解开宇宙谜题的第一条线索。温这项题为"引力中的宇宙故障"的研究发表在《宇宙学与天体粒子物理学杂志》上。DOI: 10.1088/1475-7516/2024/03/045编译来源:ScitechDaily ... PC版: 手机版:

封面图片

爱因斯坦的广义相对论启发下的全新引力凝聚星模型:就像俄罗斯套娃

爱因斯坦的广义相对论启发下的全新引力凝聚星模型:就像俄罗斯套娃 根据法兰克福歌德大学物理学家的研究结果,引力星可能看起来像一个套娃。图片来源:法兰克福歌德大学 Daniel Jampolski 和 Luciano Rezzolla 编辑黑洞内部是什么样?这仍然是科学界的一个难题。1916 年,德国物理学家卡尔-施瓦兹柴尔德(Karl Schwarzschild)概述了爱因斯坦广义相对论方程的解决方案,根据该方案,黑洞的中心由一个所谓的奇点构成,在这个点上,空间和时间都不复存在。根据这一理论,所有物理定律,包括爱因斯坦的广义相对论,在这里都不再适用;因果关系原理也被中止。这给科学带来了极大的困扰:毕竟,这意味着任何信息都无法从所谓事件视界之外的黑洞中逃逸。这可能是施瓦兹柴尔德的解决方案在很长一段时间内没有引起理论界以外的广泛关注的原因也就是说,直到 1971 年发现第一个候选黑洞,随后在 2000 年代发现银河系中心的黑洞,最后在 2019 年事件视界望远镜合作组织拍摄到第一张黑洞图像。2001 年,帕维尔-马祖尔(Pawel Mazur)和埃米尔-莫托拉(Emil Mottola)对爱因斯坦的场方程提出了一种不同的解法,从而产生了他们称之为引力凝聚星(或称引力星)的天体。与黑洞相反,从理论天体物理学的角度来看,引力星有几个优点。一方面,它们几乎和黑洞一样紧凑,而且在其表面表现出的引力基本上和黑洞的引力一样强,因此在所有实际用途上都类似于黑洞。另一方面,引力星没有事件穹界,也就是说,在事件穹界之内,任何信息都无法传出,它们的核心也不包含奇点。相反,引力星的中心由一种奇异的暗能量组成,它对压缩恒星的巨大引力产生负压。引力星的表面是一层薄薄的普通物质表皮,其厚度趋近于零。法兰克福歌德大学(Goethe University Frankfurt)的理论物理学家丹尼尔-詹波尔斯基(Daniel Jampolski)和卢西亚诺-雷佐拉(Luciano Rezzolla)教授现在提出了广义相对论场方程的解决方案,描述了另一颗引力星内部存在一颗引力星。他们将这个假想天体命名为"nestar"(源自英文"nested")。丹尼尔-詹波尔斯基(Daniel Jampolski)在卢西亚诺-雷佐拉(Luciano Rezzolla)指导下完成的学士学位论文中发现了这一解法,他说:"nestar就像一个俄罗斯套娃,我们的场方程解法可以实现一系列嵌套的引力星。"马祖尔和莫托拉认为,引力星有一个由普通物质组成的近乎无限薄的表皮,而nestar的物质组成的外壳则要厚一些:"这样的东西可能存在,这就更容易想象了"。歌德大学理论天体物理学教授卢西亚诺-雷佐拉(Luciano Rezzolla)解释说:"在施瓦兹柴尔德提出广义相对论中爱因斯坦场方程的第一个解决方案 100 年后,我们仍然有可能找到新的解决方案,这真是太棒了。这有点像在一条已经被许多人走过的道路上找到一枚金币。遗憾的是,我们仍然不知道这样的引力星是如何产生的。但即使引力星不存在,探索这些解的数学特性最终也有助于我们更好地理解黑洞。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

事件视界望远镜计划5月12日发布历史首张对银心人马座A*黑洞的可视化图像,是综合全球多地天文台于2017年4月的一段连续观测生成

事件视界望远镜计划5月12日发布历史首张对银心人马座A*黑洞的可视化图像,是综合全球多地天文台于2017年4月的一段连续观测生成。成像观测结果经特征聚类形成下方四套子图,再合并成平均值大图。 人马座A*位于银河系中央,距地球2.7万光年,质量是太阳的四百万倍。 研究人员形容,银心黑洞质量小、周围吸积气体公转周期短至仅几分钟,因此相比此前周期长达数日的M87*黑洞(2019年已发表图像)更难观测分析。 研究人员说,人马座A*与M87*虽然大小悬殊、所处星系也不同,但两者视觉形象高度相似,体现出广义相对论对不同尺度黑洞都能较好适用。 (Event Horizon Telescope,中国科学院上海天文台)

封面图片

NASA行星猎手罕见地瞥见遥远星系中的两个黑洞

NASA行星猎手罕见地瞥见遥远星系中的两个黑洞 相互环绕的黑洞。两个黑洞都有与之相关的喷流:较大的黑洞呈红色,较小的黑洞呈黄色。通常只能看到红色的喷流,但在 2021 年 11 月 12 日的 12 小时内,较小的喷流占据了主导地位,并发出了来自较小黑洞的直接信号,这也是首次被观测到。资料来源:NASA/JPL-Caltech/R.Hurt (IPAC) & M. Mugrauer (AIU Jena)OJ 287 发现黑洞2021年,美国国家航空航天局的系外行星猎杀卫星对准了OJ 287星系,以帮助天文学家证实该星系中心有两个黑洞的理论,这一理论最早是由芬兰图尔库大学的研究人员提出的。凌日系外行星巡天卫星(TESS)旨在发现数千颗围绕天空中最亮的矮星运行的系外行星。TESS 正在发现从小型岩石世界到巨型行星的各种行星,展示了银河系中行星的多样性。迄今为止,它已发现 410 颗确认的系外行星或环绕太阳以外恒星的"新世界"。NASA 的 TESS 发现了太阳系外的系外行星。在对天空进行长时间观测的过程中,TESS 还发现并监测各类亮度变化的天体,从附近的小行星到脉冲星和包含超新星的遥远星系。资料来源:美国国家航空航天局戈达德太空飞行中心OJ 287中的双黑洞证据2021 年,TESS 花了几周时间研究另一种系统,一个叫做 OJ 287 的遥远星系。研究人员发现,有间接证据表明,OJ 287星系中一个质量非常大的黑洞正围绕着一个比它大100倍的巨型黑洞运行。为了验证较小黑洞的存在,TESS 监测了主黑洞的亮度以及与之相关的喷流。直接观测围绕较大黑洞运行的较小黑洞非常困难,但研究人员通过突然爆发的亮度发现了它的存在。这种事件以前从未在OJ287中观测到过,但芬兰图尔库大学的研究人员Pauli Pihajoki早在2014年就在他的博士论文中预测到了这一事件。根据他的论文,下一次耀斑预计发生在2021年末,当时有几颗卫星和望远镜都在关注这个天体。从卫星观测的光变曲线上看,观测到的爆发出现了急剧的耀斑,显示出一个原本持续暗淡的天体是如何突然急剧变亮的。上角显示了观测到的耀斑的更多细节。爆发发出的光量相当于大约 100 个星系的亮度。资料来源:Kishore 等人,2024 年TESS 卫星于格林尼治标准时间 2021 年 11 月 12 日凌晨 2 点探测到了预期的耀斑,观测结果最近发表在 Shubham Kishore、Alok Gupta(印度 Aryabhatta 观测科学研究所)和 Paul Wiita(美国新泽西学院)的研究报告中。这次活动只持续了 12 个小时。如此短的持续时间表明,除非事先知道爆发的时间,否则很难发现大亮度的爆发。在这种情况下,图尔库研究人员的理论被证明是正确的,TESS 在正确的时间对准了 OJ 287。这一发现也得到了美国宇航局斯威夫特望远镜的证实,该望远镜也对准了同一目标。此外,波兰克拉科夫雅盖隆大学的斯塔塞克-佐拉(Staszek Zola)领导的一个大型国际合作小组通过使用地球不同地区的望远镜探测到了同一事件,因此全天至少有一个望远镜观测点始终是夜晚。此外,斯韦特兰娜-约斯塔德(Svetlana Jorstad)领导的美国波士顿大学小组和其他观测人员通过研究耀斑发生前后的偏振光,证实了这一发现。影响和未来研究图尔库大学的 Mauri Valtonen 教授和他的研究小组在一项新的研究中综合了之前的所有观测结果,结果表明,12 小时的光爆来自轨道上较小的黑洞及其周围环境。当较小的黑洞"吞下"较大黑洞周围吸积盘的一大块,将其转化为向外喷射的气体时,亮度就会快速爆发。小黑洞的气体喷流在大约 12 小时内比大黑洞的气体喷流更亮。这使得 OJ287 的颜色不再是正常的红色,而是偏红或黄色。爆发之后,红色又恢复了。黄色表明在这 12 小时内,我们看到的是来自较小黑洞的光。从 OJ287 在同一时段发出的光的其他特征也可以推断出同样的结果。"因此,我们现在可以说,我们第一次'看到'了一个绕轨道运行的黑洞,就像我们可以说TESS看到了绕其他恒星运行的行星一样。就像行星一样,要直接获得较小黑洞的图像也是极其困难的。"瓦托宁教授说:"事实上,由于 OJ 287 的距离非常远,接近 40 亿光年,我们的观测方法可能还需要很长时间才能发展到足以捕捉到较大黑洞的图像。"印度塔塔基础研究所的 A. Gopakumar 说:"不过,这个较小的黑洞可能很快就会以其他方式揭示它的存在,因为它预计会发射纳赫兹引力波。OJ 287 的引力波应该能在未来几年内被成熟的脉冲星定时阵列探测到。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人