新型噬菌体Paride能唤醒休眠状态的细菌并将其消灭 在对抗超级细菌时非常有用

新型噬菌体Paride能唤醒休眠状态的细菌并将其消灭 在对抗超级细菌时非常有用 科学家们发现了一种名为 Paride 的新型噬菌体(如紫色所示),它可以攻击休眠细菌 Fabienne Estermann & Enea Maffei / 苏黎世联邦理工学院经常处于休眠状态的细菌以避免被抗生素或其他威胁消灭,这给治疗带来了困难。现在,科学家们发现了一种病毒,它可以攻击这些沉睡的细菌,在与药物配合使用时能有效清除感染。另一种治疗方法是利用被称为噬菌体的捕杀细菌的病毒来清除感染,但这种方法也面临着疗效问题这也主要归功于细菌的休眠能力,直到危险过去。苏黎世联邦理工学院的科学家们假设,一定有某种噬菌体能够攻击处于这种休眠状态的细菌。现在,经过多年的探索,他们终于发现了这样一种噬菌体,并将其命名为 Paride。研究小组发现,Paride 能够感染铜绿假单胞菌,这种细菌是肺炎和尿道炎等一系列常见感染的罪魁祸首,而且越来越具有耐药性。重要的是,即使细菌处于休眠状态,噬菌体也能做到这一点,不过科学家们还不确定它究竟是如何做到这一点的。目前,他们怀疑噬菌体首先使用分子"钥匙"唤醒细菌,然后通过劫持细菌的繁殖机制进行繁殖。研究小组在铜绿假单胞菌的实验室培养皿中测试了 Paride 的抗菌作用。即使在休眠状态下,噬菌体也能单独消灭99%的细菌。这听起来似乎很有效,但剩下的 1%可能会重新聚集并造成问题。然而,当噬菌体疗法与一种名为美罗培南的抗生素配对使用时,这种组合就能清除整个细菌群。美罗培南本身对休眠细菌没有任何作用,但却能有效攻击活跃的细菌。可能是Paride唤醒了所有的细菌,杀死了大部分,而抗生素则消灭了其余的细菌。在后续试验中,研究人员给患有慢性感染的小鼠注射了噬菌体、抗生素或两种药物。这两种治疗方法单独使用效果都不是特别好,但联合使用对细菌有显著的抑制作用。这项研究的作者埃内亚-马菲说:"这表明我们的发现不仅仅是实验室的假象,也可能与临床有关。这是文献中描述的第一种能攻击休眠状态细菌的噬菌体"。研究小组表示,还需要做更多的工作来研究 Paride 究竟是如何杀死沉睡中的受害者的,但这是朝着提高噬菌体疗法的疗效和应对超级细菌灾难的方向迈出的充满希望的一步。这项研究发表在《自然通讯》杂志上。 ... PC版: 手机版:

相关推荐

封面图片

科学家发现新抗生素类别 可有效对抗耐药细菌

科学家发现新抗生素类别 可有效对抗耐药细菌 抗生素是现代医学的基础,在上个世纪极大地改善了全世界人民的生活质量。如今,我们往往认为抗生素是理所当然的,并严重依赖抗生素来治疗或预防细菌感染,例如,在癌症治疗、侵入性手术和移植过程中,以及在母亲和早产儿身上,抗生素可以降低感染风险。然而,全球抗生素耐药性的增加日益威胁着抗生素的有效性。为了确保未来能够获得有效的抗生素,开发不存在抗药性的新型疗法至关重要。乌普萨拉大学的研究人员最近在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the USA)上发表了他们的研究成果,介绍了作为多国联合体的一部分而开发的一类新型抗生素。他们描述的这类化合物以一种名为LpxH的蛋白质为靶标,这种蛋白质是革兰氏阴性细菌合成其最外层保护层(即脂多糖)的途径。并非所有细菌都会产生这一层,但那些会产生这一层的细菌包括世界卫生组织确定为最需要开发新型疗法的生物,其中包括已经对现有抗生素产生抗药性的大肠埃希菌和肺炎克雷伯菌。研究人员能够证明,这种新型抗生素对耐多药细菌具有很强的活性,并能治疗小鼠模型中的血液感染,从而证明了这种抗生素的前景。重要的是,由于这一类化合物是全新的,而 LpxH 蛋白尚未被用作抗生素的靶点,因此这一类化合物不会产生抗药性。这与目前临床开发中的许多"同类"抗生素形成了鲜明对比。虽然目前的研究结果很有希望,但在这类化合物进入临床试验之前,还需要做大量的工作。DOI: 10.1073/pnas.2317274121编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新研究发现了噬菌体破坏细菌防御系统的一种新方法

新研究发现了噬菌体破坏细菌防御系统的一种新方法 一项突破性研究揭示了噬菌体蛋白的新调控机制,为了解细菌防御机制和开发基于噬菌体的疗法开辟了新途径。新发现推动了抗击危险细菌的重大进展。由奥塔哥大学的彼得-菲纳兰教授领导的一个国际科学家小组研究了噬菌体(一种感染细菌的病毒)所使用的一种特殊蛋白质。对细菌和噬菌体之间这种微观军备竞赛的研究非常重要,因为它可以开发出抗生素的替代品。这项研究发表在著名的国际期刊《自然》(Nature)上,分析了噬菌体在部署抗CRISPR时使用的一种蛋白质,这是它们阻断细菌CRISPR-Cas免疫系统的方法。领衔作者、奥塔哥微生物学和免疫学系的尼尔斯-伯克霍尔茨(Nils Birkholz)博士说,了解噬菌体如何与细菌相互作用,是在人类健康或农业领域利用噬菌体对付细菌病原体的道路上迈出的重要一步。"具体来说,我们需要了解细菌用来保护自己免受噬菌体感染的防御机制,如CRISPR,这与我们利用人体免疫系统抵御病毒的方式并无二致,以及噬菌体如何抵御这些防御机制。例如,如果我们知道噬菌体是如何杀死特定细菌的,这就有助于确定适当的噬菌体作为抗菌剂使用。更具体地说,我们必须了解噬菌体在感染后是如何控制它们的反防御武器库(包括抗CRISPR)的我们必须了解噬菌体是如何调控在与细菌的战斗中有用的基因的表达的。"这项研究揭示了噬菌体在部署抗CRISPRs时需要多么谨慎。一种特定的噬菌体蛋白质有一个在许多参与基因调控的蛋白质中非常常见的部分或结构域;众所周知,这个螺旋-翻转-螺旋(HTH)结构域能够特异性地结合DNA序列,并根据具体情况打开或关闭基因。这种蛋白质的 HTH 结构域用途更为广泛,并表现出一种以前未知的调控模式。它不仅能利用这个结构域结合 DNA,还能结合其RNA转录物,RNA转录物是 DNA 序列和其中编码的抗CRISPR 之间的中介分子。由于这种蛋白质参与调节抗CRISPR的产生,这意味着这种调节具有更多层次它不仅通过DNA结合机制发生,还通过我们发现的结合信使RNA的新机制发生。这一发现可能会对基因调控的理解产生重大影响。"在了解噬菌体如何躲避 CRISPR-Cas 的防御并在一系列应用中杀死目标细菌方面,揭示这种意想不到的复杂调控机制是一项重要进展。这一发现尤其令科学界振奋,因为它展示了一个经过深入研究的蛋白质家族的新型调控机制。HTH 结构域自 20 世纪 80 年代初被发现以来就一直受到深入研究,因此我们最初认为我们的蛋白质会像其他具有 HTH 结构域的蛋白质一样发挥作用,但当我们发现这种新的作用模式时,我们感到非常惊讶。这一发现有可能改变该领域对这一重要而广泛的蛋白质结构域的功能和机制的看法,并可能对我们理解基因调控产生重大影响。"编译自/ScitechDaily ... PC版: 手机版:

封面图片

尖头不锈钢和铜可代替抗生素以物理形式消灭细菌

尖头不锈钢和铜可代替抗生素以物理形式消灭细菌 佐治亚理工学院的研究人员对这样的数字感到担忧是可以理解的,他们开始用机械方法而不是化学方法来对付 AMR。特别是,他们试图对付大肠杆菌、霍乱和沙门氏菌等革兰氏阴性菌,因为这些细菌含有一种保护性胶囊,使它们特别擅长对抗传统抗生素。该研究的第一作者 Anuja Tripathi 说:"不使用化学品杀死革兰氏阳性细菌相对容易,但由于革兰氏阴性细菌的细胞膜厚且多层,因此对付它们是一个巨大的挑战。如果这些细菌持续存在于物体表面,它们就会迅速生长。我的目标是开发一种不含抗生素的杀菌表面,它能有效对抗革兰氏阴性菌和革兰氏阳性菌。"这项研究由佐治亚理工学院化学与生物分子工程学院的博士后学者 Anjua Tripathi 领导特里帕蒂的团队利用电化学工艺蚀刻不锈钢表面,制造出成千上万个微小的微钉。然后,他们再次利用电化学方法将铜离子粘合到钢表面。结果,这种材料可以从两个方面消灭 AMR 病原体。尖刺撕碎了它们的保护外膜,而铜自古埃及时代起就以抗菌著称则进一步降解了它们的细胞膜。在测试中,钢和铜材料减少了 97% 的革兰氏阴性大肠杆菌,减少了 99% 的革兰氏阳性表皮葡萄球菌。实验表明,这种材料只需 30 分钟就能达到上述效果。事实上,新材料只含有一层很薄的铜,这意味着它避免了材料的高成本,从而使新的钢/铜组合保持在可承受的范围内。而且,由于它能用尖刺刺碎细菌,因此可以防止虫子演变成逃避死亡的手段,而化学处理方法却可以做到这一点。这已经不是我们第一次看到利用机械方法粉碎抗性细菌的材料了。仅在今年,我们就报道过一种受蜻蜓翅膀启发的尖刺钛材料,它能粉碎一种常见的呼吸道病毒;还报道过一种纳米晶体上的尖刺,它能在光照下旋转,将细菌切碎。佐治亚理工学院的这项研究在铜的基础上更进一步,而根据卫生机构关于 AMR 的可怕警告,我们真的有足够的办法来对抗超级细菌的攻击吗?这项研究发表在《小型》杂志上。 ... PC版: 手机版:

封面图片

新发现的多肽可治疗难以治愈的细菌感染

新发现的多肽可治疗难以治愈的细菌感染 弗莱曼最近在《细胞报告-物理科学》(Cell Reports Physical Science)上发表的一项研究表明,一种来自奶牛的抗菌肽有可能治疗肺炎克雷伯氏菌引起的不治之症。这种细菌通常存在于肠道中,通常是无害的。当它进入人体其他部位时,就会危害健康,并可能引起肺炎、尿路感染和伤口感染。高危人群包括老年人和有其他健康问题(如糖尿病、癌症、肾衰竭和肝病)的患者。然而,年轻人和没有其他健康问题的人也可能因细菌而感染尿道和伤口,而目前的抗生素无法治疗这些感染。美国疾病预防控制中心报告称,抗生素耐药细菌对全球健康的威胁日益严重。2019 年的一项研究发现,当年全球有近 500 万人死于耐药性感染。这些死亡病例中有很大一部分是由肺炎克氏菌造成的,因为它在没有抗生素治疗的情况下死亡率高达 50%。当这些细菌生活在生物膜中时,它们的抗药性会更强。生物膜是指微生物粘在一起,并嵌入一种保护性粘液中。最近的研究表明,60%-80%的感染与细菌生物膜有关,生物膜会增加细菌的耐药性。这就像细菌给自己穿上的外衣。她的研究正在探讨如何去除保护膜,使细菌暴露出来,从而被人体免疫系统或目前无法穿过生物膜的抗生素杀死。通过这项研究,弗莱曼发现了奶牛制造的肽如何能够快速杀死肺炎双球菌。中佛罗里达大学医学院伯内特生物医学科学学院的 Renee Fleeman 正在研究杀死高病毒细菌的药物。资料来源:中佛罗里达大学她确定肽与糖连接相互作用,使粘液保持完整。她将这一过程比作切割链式栅栏。一旦多条链条被切断,粘液结构的完整性就会受到破坏,肽就会进入并消灭不再受到保护的细菌。弗莱曼说:"我们的研究表明,聚脯氨酸肽可以在治疗后一小时内渗透并开始破坏粘液屏障。"这种肽还有另一个优势一旦它突破了粘液保护屏障,测试表明它比作为治疗不治之症的最后手段的抗生素更能杀死细菌。肽通过在细菌的细胞膜上打洞杀死细菌,与其他从细胞内部抑制生长的抗生素相比,肽能迅速杀死细菌。这种肽还可用作外用疗法,用途广泛,尤其适用于军事领域,用于治疗野战中的开放性伤口。细菌每 30 分钟就会分裂一次,因此必须迅速采取行动。她下一阶段的研究将试图了解肽功效背后的生物学原理,以及与其他药物的组合是否有助于肽的应用。她的研究得到了美国国立卫生研究院为期三年的"独立之路"R00基金的资助,目前已进入第二年。她的研究最初是作为德克萨斯大学奥斯汀分校的 K99 奖项开始的,在 2022 年 9 月加入 UCF 之前,她曾在该校工作。弗莱曼说,对耐药性感染的研究必须继续下去,因为它们对健康构成如此大的威胁。她说:"据估计,到 2050 年,抗生素耐药细菌感染将成为人类死亡的头号原因。我们的工作重点是为这场后抗生素时代的战斗做好准备,在这场战斗中,我们认为理所当然的普通抗生素将不再有效,从而危及癌症治疗、器官移植以及任何依赖于有效抗生素疗法的现代医学进步。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究认为细菌耐药性的激增并不完全归咎于抗生素的使用

研究认为细菌耐药性的激增并不完全归咎于抗生素的使用 来自韦尔科姆-桑格研究所、奥斯陆大学、剑桥大学及其合作者的研究人员对细菌进行了一次高分辨率基因比较。他们将 700 多份新的血液样本与近 5000 份先前测序过的细菌样本进行了比较,以回答哪些因素会影响耐抗生素大肠杆菌(E. coli)的传播。最近发表在《柳叶刀微生物》(Lancet Microbe)杂志上的这项研究表明,在某些情况下,抗生素使用量的增加确实会导致耐药细菌的增加。不过,研究人员证实,这取决于所使用的广谱抗生素的类型。他们还发现,抗生素耐药基因的成功取决于携带这些基因的细菌的基因构成。认识抗生素耐药性背后的所有主要因素有助于更深入地了解这些细菌是如何传播的,以及是什么阻碍了它们的传播。这样就能更好地为公共卫生干预措施提供信息,利用完整的环境视角来帮助阻止耐药性感染的传播。大肠杆菌是全球血液感染的常见原因。造成这些感染的大肠杆菌通常存在于肠道中,不会造成危害。但是,如果由于免疫系统衰弱而进入血液,就会造成严重的感染,危及生命。对于医疗服务提供者来说,抗生素耐药性,尤其是多重耐药性(MDR),已成为此类感染的一个常见特征。在英国,超过 40% 的大肠杆菌血流感染对医院用于治疗严重感染的一种主要抗生素产生了耐药性。抗生素的使用和抗药性的变化全球大肠杆菌的抗生素耐药性比率各不相同。例如,对一种常用于治疗由大肠杆菌引起的尿路感染的抗生素的耐药率,因国家而异,从 8.4% 到 92.9% 不等。几十年来,抗生素耐药性一直是一个研究课题,以往研究的监测数据一直表明,抗生素的使用与包括英国在内的全球细菌耐药率增加之间存在关联。以往的研究表明,耐药和非耐药大肠杆菌菌株稳定共存,在某些情况下,非耐药细菌更容易成功。然而,由于缺乏无偏见的大规模纵向数据集,以前无法评估基因驱动因素在其中所起的作用。韦尔科姆-桑格研究所、奥斯陆大学及其合作者的这项新研究首次直接比较了挪威和英国两个国家不同大肠杆菌菌株的成功率,并根据全国范围内的抗生素使用水平解释了差异。特定国家的抗生素耐药性通过分析近20年的数据,他们发现抗生素的使用在某些情况下与抗药性的增加有关,这取决于抗生素的种类。其中一类抗生素,即非青霉素类β-内酰胺类抗生素,在英国的平均人均使用量是挪威的三到五倍。这导致了某种具有多重耐药性的大肠杆菌菌株的感染率升高。不过,英国使用抗生素三甲氧苄氨嘧啶的频率也更高,但在比较两国常见的大肠杆菌菌株时,分析并未发现英国的抗药性水平更高。研究发现,MDR 细菌的存活取决于周围环境中存在哪些大肠杆菌菌株。由于这种情况以及一个地区的其他选择性压力,研究人员得出结论,不能认为广泛使用一种抗生素会对在不同国家传播的耐抗生素细菌产生同样的影响。持续研究的重要性科学家们强调,他们的研究结果需要持续的研究努力,以确定大肠杆菌和其他临床重要细菌在各种生态环境中传播的其他驱动因素。要想充分了解抗生素、旅行、食品生产系统和其他因素对一个国家耐药性水平的综合影响,还需要进一步的研究。了解更多能够战胜抗生素耐药性大肠杆菌的菌株,有助于找到阻止其传播的新方法。例如,尝试增加某一地区非抗药性、无害细菌的数量。第一作者之一、挪威奥斯陆大学安娜-波蒂宁(Anna Pöntinen)博士是威康-桑格研究所(Wellcome Sanger Institute)的访问科学家:"我们的大规模研究使我们能够开始回答一些长期存在的问题,即是什么原因导致人群中出现耐多药细菌。这项研究之所以能够完成,是因为英国和挪威对细菌病原体进行了全国性的系统监测。如果没有这样的系统,科学家们利用基因组学的力量所能了解到的东西就会受到很大的限制"。剑桥大学的合著者朱利安-帕克希尔(Julian Parkhill)教授说:"我们的研究表明,抗生素是抗生素耐药大肠杆菌成功的调节因素,而不是唯一原因。我们的研究追踪了几种不同广谱抗生素的影响,结果表明这些抗生素的影响因国家和地区而异。总之,我们的综合基因分析表明,在不了解该环境中细菌菌株的基因构成的情况下,并不总是能够预测抗生素的使用会对一个地区产生怎样的影响。"该研究的资深作者、威康桑格研究所(Wellcome Sanger Institute)和挪威奥斯陆大学的尤卡-科兰德(Jukka Corander)教授说:"耐药性大肠杆菌是一个重大的全球公共卫生问题。长期以来,人们一直认为过度使用抗生素是导致超级细菌增多和传播的原因之一,而我们的研究则强调,广泛存在的大肠杆菌菌株的耐药性水平可能有很大差异。抗生素的使用将是一种选择性压力,而我们的研究表明,这并不是影响这些细菌成功的唯一因素。如果我们要控制超级细菌的传播,继续利用基因组学来详细了解细菌成功的内在驱动因素至关重要"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家开发出突破性新型抗生素“Cresomycin” 可躲避细菌抗药性

科学家开发出突破性新型抗生素“Cresomycin” 可躲避细菌抗药性 UIC 生物科学副教授尤里-波利卡诺夫(Yury Polikanov)的研究小组与哈佛大学的同事建立了长期研究合作关系,最新发现了这种前景广阔的新型抗生素。UIC 的科学家们提供了对细胞机制和结构的重要见解,帮助哈佛大学的研究人员设计和合成新药。在开发这种新型抗生素的过程中,该研究小组重点研究了许多抗生素是如何与一个共同的细胞目标核糖体相互作用的,以及耐药细菌是如何改造它们的核糖体来保护自己的。波利卡诺夫说:"半数以上的抗生素都是通过干扰病原菌的蛋白质生物合成来抑制其生长的,这是一个由核糖体催化的复杂过程。抗生素与细菌核糖体结合,破坏了这种蛋白质制造过程,导致细菌入侵者死亡。"但是,许多细菌物种进化出了简单的防御措施来抵御这种攻击。其中一种防御方法是,它们在核糖体上添加一个由一个碳原子和三个氢原子组成的甲基,从而干扰抗生素的活性。科学家们推测,这种防御只是细菌在物理上阻塞了药物与核糖体结合的部位,"就像在椅子上放了个大头针",波利卡诺夫说。但他们发现了一个更复杂的状况,他们在最近发表于《自然-化学生物学》(Nature Chemical Biology)的一篇论文中对此进行了描述。研究人员通过使用一种名为 X 射线晶体学的方法,以近乎原子级的精度观察抗药性核糖体,他们发现了两种防御策略。他们发现,甲基不仅能物理阻断结合位点,还能改变核糖体内部"内脏"的形状,进一步破坏抗生素的活性。克服细菌防御随后,波利卡诺夫的实验室利用 X 射线晶体学研究了某些药物是如何规避这种常见的细菌抗药性的,其中包括2021 年由 UIC/哈佛大学合作发表在《自然》杂志上的一种药物。波利卡诺夫说:"通过确定抗生素与两种抗药性核糖体相互作用的实际结构,我们看到了现有结构数据或计算机建模无法预测的东西。看到一次总比听到一千次要好,我们的结构对于设计这种前景广阔的新型抗生素以及了解它如何设法摆脱最常见类型的抗药性非常重要。"新抗生素"Cresomycin"是人工合成的。它经过预先组织,可以避开甲基基团的干扰,强力附着在核糖体上,破坏核糖体的功能。这一过程包括将药物锁定为预先优化的形状,以便与核糖体结合,从而帮助它绕过细菌的防御。它只是与核糖体结合,就好像它并不关心是否存在这种甲基化,如此一来能轻松克服几种最常见的耐药性。Cresomycin的巨大潜力在哈佛大学进行的动物实验中,这种药物能防止金黄色葡萄球菌、大肠杆菌和铜绿假单胞菌等常见致病菌耐多药菌株的感染。基于这些令人鼓舞的结果,下一步将对Cresomycin在人体中的有效性和安全性进行评估。即使在这一早期阶段,这一过程也证明了结构生物学在设计下一代抗生素和其他救命药物中的关键作用。波利卡诺夫说:"如果没有这些结构,我们就无法了解这些药物是如何与经过修饰的耐药性核糖体结合并发挥作用的。我们确定的结构让我们从根本上了解了这些药物逃避耐药性的分子机制。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人