斯坦福研究人员借助新材料研发出通用存储器 有助于搭建超高效内存矩阵

斯坦福研究人员借助新材料研发出通用存储器 有助于搭建超高效内存矩阵 内存技术的创新斯坦福大学的研究人员证明,一种新材料可使相变存储器(依靠在高低电阻状态之间切换来创建计算机数据的1和0)成为未来人工智能和以数据为中心的系统的改进选择。最近,《自然-通讯》(Nature Communications)杂志详细介绍了他们的可扩展技术,该技术具有快速、低功耗、稳定、持久的特点,并且可以在与商业制造兼容的温度下制造。斯坦福大学电子工程系 Pease-Ye 教授兼材料科学与工程特聘教授 Eric Pop 说:"我们不仅仅是在提高耐力或速度等单一指标,而是在同时提高多个指标。这是我们在这一领域建立的最现实、最适合工业的东西。我想把它看作是向通用存储器迈出的一步。"相变存储器件在高电阻和低电阻状态下的截面图。底部电极的直径约为 40 纳米。箭头标记了超晶格材料层之间形成的一些范德华(vdW)界面。超晶格在高电阻态和低电阻态之间被破坏和重构。 图源:波普实验室提供提高计算效率如今的计算机在不同的位置存储和处理数据。易失性内存(速度快,但在计算机关机时就会消失)负责处理数据,而非易失性内存(速度不快,但可以在不持续输入电源的情况下保存信息)负责长期数据存储。当处理器等待检索大量数据时,在这两个位置之间转移信息会造成瓶颈。论文的共同第一作者、Pop 和 Philip Wong(工程学院 Willard R. and Inez Kerr Bell 教授)共同指导的博士候选人吴向进(音译)说:"来回穿梭数据需要耗费大量能源,尤其是在当今的计算工作负载下。有了这种存储器,我们希望能把存储器和处理过程更紧密地结合在一起,最终整合到一个设备中,从而减少能耗和时间"。要实现一种有效的、商业上可行的通用存储器,既能进行长期存储,又能进行快速、低功耗处理,同时又不牺牲其他指标,还存在许多技术障碍,但波普实验室开发的新型相变存储器是迄今为止任何人在这项技术上取得的最接近目标的成果。研究人员希望它能激励人们进一步开发和采用这种通用存储器。GST467 合金的承诺这种存储器依赖于 GST467,这是一种由四份锗、六份锑和七份碲组成的合金,由马里兰大学的合作者开发。Pop 和他的同事找到了在超晶格中将这种合金夹在其他几种纳米薄材料之间的方法,他们以前曾用这种分层结构取得过良好的非易失性存储器效果。"GST467 的独特成分使其开关速度特别快,"在 Pop 实验室获得博士学位的 Asir Intisar Khan 说,他是这篇论文的共同第一作者。"将它集成到纳米级器件的超晶格结构中,可以实现低开关能量,为我们提供了良好的耐久性、非常好的稳定性,并使其具有非易失性它的状态可以保持 10 年或更长的时间。"设定新标准GST467 超晶格通过了几项重要的基准测试。相变存储器有时会随时间发生漂移,即 1 和 0 的值会缓慢移动,但他们的测试表明,这种存储器非常稳定。它的工作电压也低于 1 伏(这是低功耗技术的目标),而且速度明显快于一般的固态硬盘。Pop 说:"其他几种非易失性存储器的速度可能更快一些,但它们的工作电压更高,功耗更大。所有这些计算技术都需要在速度和能耗之间做出权衡。我们能在低于一伏特的电压下以几十纳秒的速度进行切换,这一点非常重要。"超晶格还能在狭小的空间内容纳大量的记忆细胞。研究人员将记忆单元的直径缩小到 40 纳米,不到冠状病毒大小的一半。由于超晶格的制造温度较低,而且采用了先进的制造技术,因此这种方法是可行的。制造温度远远低于所需要的温度。研究人员正在讨论将存储器堆叠成数千层,以提高密度。这种存储器可以实现未来的3D分层。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

研究人员开发出一种新型相变存储器 结合DRAM和NAND的优点

研究人员开发出一种新型相变存储器 结合DRAM和NAND的优点 DRAM 速度快但易挥发,这意味着当电源被切断时(比如当你关闭电脑时),存储在其中的数据就会消失。而NAND 闪存(如固态硬盘中使用的闪存)即使断电也能保留数据,但速度又明显慢于 DRAM。PCM 既快又不会丢失数据,但传统上制造成本高,耗电量大(将相变材料熔化成非晶态需要热量,这就影响了能效)。早期解决高功耗问题的方法主要是通过尖端光刻技术缩小整个设备的物理尺寸。但改进效果微乎其微,而且在更小的技术上制造所增加的成本和复杂性也不合理。Shinhyun Choi 教授和团队设计了一种方法,只缩小直接参与相变过程的元件,从而制造出可相变的纳米丝。与使用昂贵的光刻工具制造的传统相变存储器相比,这种新方法将功耗降低了 15 倍,而且制造成本也低得多。新型相变存储器保留了传统存储器的许多特性,如速度快、开/关比率大、变化小以及多级存储器特性。Choi说,他们希望研究成果能成为未来电子工程的基础,并能惠及高密度三维垂直存储器、神经形态计算系统、边缘处理器和内存计算系统等应用。该团队的研究成果发表在本月早些时候出版的《自然》杂志上,论文标题为《通过相变自约束纳米丝实现相变记忆》: ... PC版: 手机版:

封面图片

韩国科学技术院研发出用于神经形态计算的新型超低功耗存储器

韩国科学技术院研发出用于神经形态计算的新型超低功耗存储器 韩国科学技术院(KAIST)(院长 Kwang-Hyung Lee)4 月 4 日宣布,电气工程学院 Shinhyun Choi 教授的研究团队开发出了下一代相变存储器*设备,具有超低功耗的特点,可以取代 DRAM 和 NAND 闪存。相变记忆体指的是一种存储和/或处理信息的存储器件,利用热量将材料的结晶状态改变为非晶态或结晶态,从而改变其电阻状态。现有的相变存储器存在一些问题,如制造高比例器件的制造工艺昂贵,运行时需要大量电力。为了解决这些问题,Choi 教授的研究团队开发出了一种超低功耗相变存储器件,它不需要昂贵的制造工艺,而是通过电学方法形成非常小的纳米(nm)级相变丝。这一新研发成果具有突破性的优势,不仅加工成本极低,而且还能以超低功耗运行。DRAM 是最常用的存储器之一,速度非常快,但具有易失性,当电源关闭时数据就会消失。存储设备 NAND 闪存的读/写速度相对较慢,但它具有非易失性特点,即使在电源切断时也能保存数据。图 1.本研究开发的超低功耗相变存储器件的图示,以及新开发的相变存储器件与传统相变存储器件的功耗对比。资料来源:韩国科学技术院新兴纳米技术与集成系统研究所另一方面,相变存储器结合了 DRAM 和 NAND 闪存的优点,具有高速和非易失性的特点。因此,相变存储器作为可替代现有存储器的下一代存储器备受瞩目,目前正被作为一种存储器技术或模拟人脑的神经形态计算技术而积极研究。然而,传统的相变存储器件在运行时需要消耗大量电能,因此难以制造出实用的大容量存储器产品或实现神经形态计算系统。为了最大限度地提高存储器件运行时的热效率,以前的研究工作主要集中在通过使用最先进的光刻技术缩小存储器件的物理尺寸来降低功耗,但这些研究在实用性方面受到了限制,因为功耗的改善程度微乎其微,而成本和制造难度却随着每次改进而增加。为了解决相变存储器的功耗问题,Shinhyun Choi 教授的研究团队创造了一种在极小面积内电形成相变材料的方法,成功实现了超低功耗相变存储器件,其功耗比使用昂贵的光刻工具制造的传统相变存储器件低 15 倍。Shinhyun Choi 教授对这项研究未来在新研究领域的发展充满信心,他说:"我们开发的相变存储器件意义重大,因为它提供了一种新颖的方法,可以解决生产存储器件过程中的遗留问题,同时大大提高制造成本和能源效率。我们期待我们的研究成果能成为未来电子工程的基础,实现包括高密度三维垂直存储器和神经形态计算系统在内的各种应用,因为它开辟了从多种材料中进行选择的可能性。我要感谢韩国国家研究基金会和国家纳米实验室中心对这项研究的支持。"4 月 4 日,国际著名学术期刊《自然》(Nature)4 月刊发表了这项研究的论文,KAIST 电气工程学院博士生 See-On Park 和博士生 Seokman Hong 作为第一作者参与了这项研究。编译自:ScitechDaily ... PC版: 手机版:

封面图片

东京大学研究人员实现"巨磁阻开关效应" 施加一个磁场改变高达250倍电阻

东京大学研究人员实现"巨磁阻开关效应" 施加一个磁场改变高达250倍电阻 根据日本东京大学公报,该校研究人员领衔的团队研制出一种通道长20纳米的锗半导体纳米通道器件,它属于半导体两端器件,拥有铁和氧化镁双层结构的电极,还添加了硼元素。研究人员观察到,通过给这种器件施加磁场能使其表现出电阻开关效应,外加磁场还使其实现了高达250倍的电阻变化率。研究人员给这种现象取名为“巨磁阻开关效应”。不过,目前仅能在20开尔文(约零下253摄氏度)的低温环境下观测到这种“巨磁阻开关效应”。研究团队下一步将致力于提高“巨磁阻开关效应”出现的温度,以便将其用于开发新型电子元器件等。基于电阻开关效应的电阻式随机存取存储器被视为最有竞争力的下一代非易失性存储器之一。传统的动态随机存取存储器是利用电容储存电荷多少来存储数据,其一大缺点是数据的易失性,电源意外切断时会丢失存储数据。而电阻式随机存取存储器是通过向器件施加脉冲电压产生电阻高低变化,以此表示二进制中的“0”和“1”,其存储数据不会因意外断电而丢失,是一种处于开发阶段的下一代内存技术。论文第一作者、东京大学研究生院工学系研究科教授大矢忍指出,新成果将来有望在电子领域得到应用,特别是用于神经形态计算以及开发下一代存储器、超高灵敏度传感器等新型器件。 ... PC版: 手机版:

封面图片

【存储器大厂华邦电:元宇宙后续对Flash需求将持续增加】

【存储器大厂华邦电:元宇宙后续对Flash需求将持续增加】 1月17日消息,存储器大厂华邦电表示,目前市面上的VR装置均搭载多颗NOR Flash元件,随着元宇宙的虚拟实镜装置设计将更趋轻巧,不同应用市场在运算功能及反应速度的要求提升,后续对Flash需求将持续增加。

封面图片

业界预期存储器价格可能在二季度提前反应

业界预期存储器价格可能在二季度提前反应 存储器产业2024年从价格谷底回升,业界预期,即使上半年的市场终端需求不如预期,原厂仍将力撑DRAM及NAND Flash价格温和调涨,为了应对传统旺季加剧供应紧俏,不排除二季度再掀起一波补货涨价潮,预计存储器价格可能提前反应,二季度存储器的价格涨势将成为下半年产业风向标。 消息来源: 科创板日报

封面图片

可调谐忆阻器的研发进展有助于人工神经网络更高效处理随时间变化的数据

可调谐忆阻器的研发进展有助于人工神经网络更高效处理随时间变化的数据 人工神经网络也许很快就能更高效地处理随时间变化的信息,如音频和视频数据。密歇根大学领导的一项研究在今天的《自然-电子学》(Nature Electronics)杂志上报告了首个具有可调节"弛豫时间"的忆阻器。忆阻器是一种将信息存储在电阻中的电子元件,与当今的图形处理单元相比,它可以将人工智能的能源需求降低约 90 倍。预计到 2027 年,人工智能的耗电量将占全球总耗电量的一半左右,而且随着越来越多的公司销售和使用人工智能工具,这一比例还有可能进一步上升。"现在,人们对人工智能很感兴趣,但要处理更大、更有趣的数据,方法就是扩大网络规模。这效率并不高,"麻省理工大学詹姆斯-R-梅勒工程学教授 Wei Lu 说,他与麻省理工大学材料科学与工程学副教授 John Heron 是这项研究的共同通讯作者。图形处理器的问题问题在于,GPU 的运行方式与运行人工智能算法的人工神经网络截然不同整个网络及其所有互动都必须从外部存储器中顺序加载,这既耗时又耗能。相比之下,忆阻器可以节省能源,因为它们模仿了人工神经网络和生物神经网络在没有外部存储器的情况下运行的主要方式。在某种程度上,忆阻器网络可以体现人工神经网络。麻省理工学院材料科学与工程系应届博士毕业生 Sieun Chae 与麻省理工学院电气与计算机工程系应届博士毕业生 Sangmin Yoo 是这项研究的共同第一作者。在生物神经网络中,计时是通过放松来实现的。每个神经元都会接收电信号并将其发送出去,但这并不能保证信号会向前推进。在神经元发送自己的信号之前,必须先达到接收信号的某个阈值,而且必须在一定时间内达到该阈值。如果时间过长,神经元就会随着电能的渗出而松弛。神经网络中具有不同松弛时间的神经元有助于我们理解事件的顺序。忆阻器如何工作忆阻器的工作原理略有不同。改变的不是信号的存在与否,而是有多少电信号可以通过。接触到一个信号,忆阻器的电阻就会降低,从而允许更多的下一个信号通过。在忆阻器中,弛豫意味着随着时间的推移,电阻会再次上升。Lu 的研究小组过去曾探索过在忆阻器中加入弛豫时间,但这并不是可以系统控制的。但现在,Lu 和 Heron 的团队已经证明,基础材料的变化可以提供不同的弛豫时间,从而使忆阻器网络能够模仿这种计时机制。材料成分和测试研究小组在超导体 YBCO(由钇、钡、碳和氧制成)的基础上构建了这些材料。YBCO在零下292华氏度的温度下没有电阻,但他们想要它的晶体结构。它引导着镁氧化物、钴氧化物、镍氧化物、铜氧化物和锌氧化物在忆阻器材料中的组织。赫伦称这种熵稳定氧化物为"原子世界的厨房水槽"添加的元素越多,它就越稳定。通过改变这些氧化物的比例,研究小组获得了 159 到 278 纳秒(即万亿分之一秒)的时间常数。他们构建的简单忆阻器网络学会了识别 0 到 9 数字的发音。一旦经过训练,它就能在音频输入完成之前识别出每个数字。未来展望这些忆阻器是通过能源密集型工艺制造的,因为研究小组需要完美的晶体来精确测量它们的特性,但他们预计,更简单的工艺也适用于大规模制造。赫伦说:"到目前为止,这只是一个愿景,但我认为有一些途径可以使这些材料具有可扩展性,而且价格合理。这些材料是地球上丰富的资源,无毒、廉价,你几乎可以把它们喷洒在上面。"编译来源:ScitechDailyDOI: 10.1038/s41928-024-01169-1 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人