城市发展可能导致"行星灾难" 科学家倡导为城市的未来设计新政策

城市发展可能导致"行星灾难" 科学家倡导为城市的未来设计新政策 该系统将履行与政府间气候变化专门委员会(IPCC)在气候变化方面类似的职能。被忽视的城市发展影响主要作者、布里斯托尔大学可持续发展国际治理专家杰西卡-埃斯佩(Jessica Espey)博士说:"气候变化引起了全球的高度关注,但在研究城市的巨大发展对地球造成的破坏性影响时,我们却发现了一个巨大的盲点。加强国际合作对于更好地管理城市的可持续发展,保护我们赖以生存的重要地球系统(包括水、空气和土地)至关重要"。根据最近发布的《世界城市报告》,目前全球有一半以上(55%)的人口居住在城市,到 2050 年,这一比例将上升到近三分之二。正如政府间气候变化专门委员会(IPCC)所承认的那样,城市地区的二氧化碳排放量约占总排放量的四分之三,但其扩张并未在多边层面得到集体管理。除了加剧气候变化和空气质量问题外,城市还在极大地重塑地球的四大系统:水圈、大气圈、生物圈和地圈。城市扩张的环境代价该报告的共同作者、耶鲁大学环境学院地理与城市化科学教授凯伦-濑户(Karen Seto)教授说:"全球城市用地扩张是导致栖息地和生物多样性丧失的最大原因之一。造成这种现象的原因不仅在于城市对土地的开垦和占用,还在于对剩余未开发土地的进一步分割。这中断了野生动物和生态区域,此外还增加了火灾、虫害和疾病的风险,使其更容易传播"。废物处理、工业和运输业的有害排放以及土地开发都是生物多样性急剧减少的原因。即使是所谓的绿色替代品,如 LED 照明等节能技术,也会产生有害影响,如抑制褪黑激素的分泌,而褪黑激素是调节人类和其他生物睡眠模式的荷尔蒙。综合城市政策的必要性牛津大学峰值城市研究项目主任迈克尔-基思教授说,该项目召集了作者和全球城市政策领域的其他世界领袖:"现在是时候让世界各国领导人坐起来,认识到如果我们不审视如何设计、建设、资助和管理世界上的城市,就不可能应对气候变化"。该报告的共同作者、牛津大学交通地理学教授蒂姆-施瓦宁(Tim Schwanen)呼吁制定更强有力的政策,利用城市的潜力推动技术和社会创新,从而最大限度地减少城市化的负面影响。施瓦嫩教授说:"围绕公共交通、自行车和步行发展城市,可以改善公众健康和社会融合,同时最大限度地减少排放以及土地和自然资源的消耗"。尽管城市扩张造成了巨大而深远的影响,但大多数全球决策论坛很少讨论这一问题,也没有与相关科学家进行足够系统的磋商,而这些科学家可以提供重要的见解或创新的解决方案。曾任联合国可持续发展解决方案网络主任的埃斯佩博士说:"尽管联合国秘书长最近成立了一个新的独立科学顾问小组令人鼓舞,但目前还没有城市科学方面的代表。如果我们要集体有效地应对一些最紧迫的全球挑战,就必须改变这种状况。"作者建议建立一个新的城市科学咨询系统,该系统将与联合国大会合作,突出相关问题,并将有关城市增长的变革性影响的最新信息传递给决策者。共同作者、布里斯托尔大学人文地理学讲席教授苏珊-帕内尔(Susan Parnell)教授补充说:"这并不一定是像IPCC那样规模宏大、耗资巨大的工作,其他模式也是可行的。越来越清楚的是,这种变化现在就必须发生,这样我们才不会梦游般地陷入另一场地球灾难。"编译来源:ScitechDaily Science ... PC版: 手机版:

相关推荐

封面图片

科学家警告即将发生的行星灾难

科学家警告即将发生的行星灾难 专家表示,地球正面临着迅速增加的极端气候和地球动力学事件。这导致地震、火山爆发、大气异常和热失衡的频率和强度增加。 在拯救地球科学合作组织的演讲中,科学家们敲响了警钟全球灾难的真正威胁,即未来几年地球自我毁灭的风险。

封面图片

科学家揭开北极湿地甲烷排放量激增之谜

科学家揭开北极湿地甲烷排放量激增之谜 畜牧业和化石燃料生产每年向大气中排放数吨甲烷,其作用已被充分研究。尽管不确定性更大,但量化自然湿地的排放量对于预测气候变化非常重要。科学家们预计,湿地甲烷排放量正在上升,因为北方地区和北极地区生态系统的气温正在以大约全球平均气温四倍的速度上升,但是很难说上升了多少,因为在这些广阔且经常被水淹没的环境中监测排放量一直非常困难直到现在。伯克利实验室研究科学家、资深作者朱清(音译)与伯克利实验室博士后研究员袁坤晓佳(音译)解释说:"北方和北极环境富含碳,容易受到气候变暖的影响。本周发表在《自然-气候变化》上的一篇论文介绍了他们的研究方法。""气温升高会增加微生物活动和植被生长,"朱清说,"这与甲烷等气体的排放有关。通过了解甲烷的自然来源是如何变化的,我们可以更准确地监测温室气体,让科学家们了解当前和未来的气候变化状况。通过更准确地了解湿地在全球气候系统中发挥的作用,以及湿地甲烷排放量的增加方式和速度,这项研究可以提供一个科学基线,帮助理解和应对气候变化。"高纬度湿地:量化甲烷排放量及其变化情况尽管甲烷在大气中停留的时间远远少于二氧化碳(10 年对 300 年),但甲烷的分子结构使其使大气变暖的能力是二氧化碳的 30 倍。气温升高不仅会增强饱和土壤中甲烷释放微生物的活动,而且还会增加水渍土壤的面积,因为冰冻的土壤会解冻,更多的降水会以雨水而不是雪水的形式降下,这些微生物会在水渍土壤中茁壮成长。这就是为什么科学家们预计这些高纬度地区的甲烷排放量会增加,以及为什么迫切需要更准确地量化甲烷。出版物中的地图,显示了北极和北方地区湿地甲烷热点的具体位置和面积。资料来源:伯克利实验室测量温室气体释放的最常见方法是在一个室内的固定位置捕捉土壤中释放的气体,让它们在一定时间内积累。另一种方法是更自主的数米高的涡度协方差塔,它可以在生态系统的大片区域内通常是在湿地等难以到达的地方持续测量土壤、植物和大气之间的温室气体交换。伯克利实验室的研究团队结合使用这两种方法获得的数据,分析了北极-北方地区各湿地超过 307 年的甲烷排放数据,从而更好地了解了影响数百英亩土地和数分钟至数十年内甲烷排放的各种因素。研究小组发现,从 2002 年到 2021 年,这些地区的湿地平均每年释放 20 太克(teragrams)甲烷,相当于约 55 座帝国大厦的重量。他们还发现,自 2002 年以来,排放量增加了约 9%。此外,研究人员还考虑了北极和北方地区的两个"热点"地区,与周围环境相比,这两个地区的单位面积甲烷排放量要高得多。他们发现,大约一半的年均排放量来自这些热点地区,这有助于为缓解工作和未来的测量提供信息并确定目标。影响湿地排放的环境因素研究人员还调查了甲烷排放量增加的环境因素,发现有两个主要驱动因素:温度和植物生产力。气温升高会增加微生物的活动;当气温升高时无论是由于气候变化造成的平均气温升高,还是由于气候变异造成的某些特定年份的气温升高,都会在这一过程中释放出更多的甲烷。研究小组发现,温度是控制北极-北方生态系统湿地排放及其变化的主要因素。这可能会导致气候反馈,即微生物活动增加所产生的甲烷排放会提高大气温度,从而导致更多的甲烷排放,如此循环。植物生产力越高,土壤中的碳含量就越高,从而促进甲烷微生物的繁殖。研究人员发现,当植物的生产力更高、更活跃,释放出有助于微生物生长的基质时,湿地的甲烷排放量就会增加。研究小组还发现,湿地甲烷排放量最高的 2016 年也是高纬度地区自 1950 年以来最温暖的一年。由于甲烷在大气中的停留时间很短,因此可以相对较快地减少和清除,"朱解释说。"通过更准确地了解湿地在全球气候系统中发挥的作用,以及湿地甲烷排放量的增加方式和速度,这项研究可以提供一个科学基线,帮助理解和应对气候变化。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家提出应对气候变化的大胆新方案

科学家提出应对气候变化的大胆新方案 俄勒冈州立大学的威廉-里普尔(William Ripple)、前俄勒冈州立大学博士后研究员克里斯托弗-沃尔夫(Christopher Wolf)以及合作者认为,他们的方案应该与联合国政府间气候变化专门委员会使用的五种"共享社会经济路径"(SSPs)一起被纳入气候模型。"我们知道,鉴于目前的排放趋势、政治意愿的缺乏以及社会的普遍否认,我们提出的方案在实施过程中可能会面临巨大的挑战,但如果不将其纳入一系列方案中,就根本无法对其优点进行诚实的辩论,"OSU 林学院生态学杰出教授里普说道。"我们主张激进的渐进主义:通过短期的小步骤实现巨大的改变。与许多其他气候方案相比,我们提供了一种亟需的对比,这些方案可能更符合现状,而现状是行不通的。"里普和来自美国、荷兰和澳大利亚的合著者在《环境研究通讯》上发表的一篇论文中介绍了他们的恢复途径。他们说,这条途径的灵感来自于对地球系统变量的独特汇编,这些变量生动地说明了自1850年以来人类对资源的需求是如何爆炸性增长的,这表明生态已经过剩。沃尔夫现在是总部位于科瓦利斯的陆地生态系统研究协会(Terrestrial Ecosystems Research Associates)的科学家。他表示:"主要依赖化石燃料的人类人口、国内生产总值和能源消耗的增长导致温室气体排放量激增,极大地改变了土地利用,引发了生物多样性的大规模衰退。"作者指出,目前的气候变化模型依赖于与政策选择和社会发展相关的多种假设和因素。一个由气候科学家、经济学家和能源系统建模人员组成的国际团队开发了"SSPs",用于推导不同政策下的温室气体排放情景,这些政策假定 GDP 在 2100 年前持续大幅增长。沃尔夫说:"SSPs描述了未来可能出现的事态发展,这些发展将给减缓和适应气候变化带来不同的挑战。它们基于五种叙述,描述了不同的社会经济发展,其中一些比另一些更具可持续性。设想侧重于减少初级资源的消耗,使环境压力保持在地球极限之内,人均国内生产总值随着时间的推移趋于稳定。"沃尔夫、里普尔和合作者对一系列变量进行了长期回顾:化石燃料排放、人口、GDP、土地利用、温室气体浓度、全球温度、脊椎动物物种丰度、收入不平等和肉类产量。作者包括陆地生态系统研究协会的 Jillian Gregg、荷兰环境评估局的 Detlef P. van Vuuren 和悉尼大学的 Manfred Lenzen。"收入份额变量可追溯到 1820 年,它显示了收入最高的 10%的人如何持续获得至少 50%的收入,说明了长期以来全球经济的不平等,"里普说。"恢复性途径将代表一个更公平、更有韧性的世界,其重点是自然保护,将其作为自然气候解决方案;社会福祉和生活质量;女孩和妇女的平等和高水平教育,从而实现低生育率和更高的生活水平;以及向可再生能源的快速过渡。"与目前的一些共享社会经济路径不同,恢复性路径并不依赖于碳捕集技术的发展,也不像可持续发展战略文件那样假设经济持续增长。里普说:"通过优先考虑大规模的社会变革,我们提出的路径可以比那些支持富裕国家增加资源消耗的路径更有效地限制气候变暖。我们的目标是通过解决气候变化、生物多样性丧失和社会经济不公正问题的整体愿景,使各种地球生命迹象的曲线弯曲。我们的工作为人类如何从这些环境和社会危机中拯救世界提供了一个案例。"编译自/ScitechDaily ... PC版: 手机版:

封面图片

科学家计算出体量巨大的全球地下土壤无机碳存量

科学家计算出体量巨大的全球地下土壤无机碳存量 上层土(蜕皮表层)因有机质大量积累而呈深色,下层土(钙质地层)因碳酸钙的存在而呈白色。根据《中国土壤分类学》,该土壤类型为钙质硅质寒武系。资料来源:张甘霖在发表于《科学》的一项研究中,中国科学院地理科学与资源研究所黄媛媛研究员和中国科学院土壤研究所张甘霖研究员领导的研究人员与合作者一起,量化了SIC的全球存储量,对这一长期存在的观点提出了挑战。研究人员发现,在全球土壤表层两米处以 SIC 形式储存的碳高达 23050 亿吨,是全球所有植被中碳含量总和的五倍多。这个隐藏的土壤碳库可能是了解碳如何在全球移动的关键。"但问题是:这个巨大的碳库很容易受到环境变化的影响,尤其是土壤酸化。酸性物质会溶解碳酸钙,并以二氧化碳气体或直接进入水中的形式将其排出,"黄教授说。"由于工业活动和高强度耕作,中国和印度等国家的许多地区正在经历土壤酸化。如果不采取补救措施和更好的土壤耕作方法,世界很可能在未来三十年内面临 SIC 的干扰。"地球历史上积累的对 SIC 的干扰对土壤健康有着深远的影响。这种破坏损害了土壤中和酸性、调节养分水平、促进植物生长和稳定有机碳的能力。从根本上说,SIC 在储存碳和支持依赖于它的生态系统功能方面发挥着至关重要的双重作用。研究人员发现,每年约有 11.3 亿吨无机碳从土壤流失到内陆水域。这种流失对陆地、大气、淡水和海洋之间的碳传输有着深远的影响,但往往被忽视。虽然社会已经认识到土壤的重要性,认为它是以自然为基础的应对气候变化解决方案的基本组成部分,但大部分关注点都集中在有机碳上。现在,无机碳显然同样值得关注。这项研究强调了将无机碳纳入气候变化减缓战略的紧迫性,将其作为维持和加强碳固存的额外杠杆。旨在每年增加(大部分)0.4% SOC 的"4 per mille initiative"等国际计划也应考虑无机碳在实现可持续土壤管理和气候减缓目标中的关键作用。研究人员希望通过扩大对土壤碳动态的了解,将有机碳和无机碳都包括在内,从而制定出更有效的战略来维护土壤健康、增强生态系统服务和减缓气候变化。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

南极巨大冰山崩解 科学家称为自然过程

南极巨大冰山崩解 科学家称为自然过程 一块巨大的冰山从南极布伦特冰架分裂脱离。科学家说,冰山脱裂是“冰架崩解”这种自然过程所造成的,并非气候变化的结果。科学家一直在观察布伦特冰架的主要裂缝,并已经预料到裂缝会扩大到完全断裂。英国南极研究站距离裂缝20公里远,科研人员没有任何危险。

封面图片

科学家揭示变暖世界中树木与真菌之间的隐秘斗争

科学家揭示变暖世界中树木与真菌之间的隐秘斗争 巴塔哥尼亚森林地面上的一种外生菌根蘑菇。图片来源:SPUN/Mateo Barrenengoa现在,科学家们发现,造成这种滞后的原因可能就在地下。今天(5 月 27 日)发表在《美国国家科学院院刊》(PNAS)上的一项研究表明,树木,尤其是遥远的北方地区的树木,可能正在迁移到没有真菌生命支持的土壤中。科西嘉岛上生长的一棵巨型松树,那里的气候变化影响极为严重。图片来源:SPUN/Quentin van den Bossche菌根真菌是一种生长在土壤中的丝状微小真菌,能与植物根系连接,为植物提供重要的养分以交换碳。北纬地区的大多数大型针叶树都与一种叫做外生菌根真菌的菌根真菌建立了关系。第一作者、地下网络保护协会(SPUN)真菌生态学家迈克尔-范-努兰德(Michael Van Nuland)说:"在研究这些共生关系的未来时,我们发现,树木与真菌之间35%的伙伴关系会受到气候变化的负面影响。"菌根蘑菇 Cortinarius spp.图片来源:SPUN/Mateo Barrenengoa作者发现,在北美,最容易受到这种气候错配影响的树木是松科的树木。特别值得关注的地区是物种分布区的边缘,那里的树木往往面临着最恶劣的条件。在这里,作者发现,在这些地方存活率较高的树木拥有更多样化的菌根真菌,这表明这些共生关系可能对帮助树木抵御气候变化的影响至关重要。"外生菌根真菌与气候的关系不同于外生菌根树木,"合著者、SPUN数据科学家克拉拉-秦(Clara Qin)说。"我们发现的证据表明,树木必须对这些差异做出回答。"意大利亚平宁山脉的外生菌根森林。SPUN/Seth Carnill这项研究揭示了气候变化可能对共生生物产生的影响。秦说:"虽然我们预计气候驱动的迁徙会受到非生物因素的限制,比如高纬度和高海拔地区的可用空间,但我们通常不会考虑生物因素的限制,比如共生伙伴的可用性。"Van Nuland 说:"我们必须继续努力了解气候变化如何影响菌根共生关系,这一点绝对至关重要。这些关系是地球上所有生命的基础我们必须了解并保护它们。这一行动呼吁强调了研究和保护这些基本生态互动关系的重要性。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人