中国科大首次观测到多体配对赝能隙

中国科大首次观测到多体配对赝能隙 图1:图中头顶玉珠的两条鲤鱼,象征着一对自旋相反的费米子;龙门代表了超流相变和赝能隙。鲤鱼跃过龙门,表明配对发生在超流相变温度以上。这种配对现象反过来又导致赝能隙的出现。/制图:陈磊能隙的产生是超导的标志性现象。在常规超导体中,能隙存在于超导相变温度以下。随着铜氧化物高温超导体的发现,即使在超导相变温度以上,能隙仍然能够被观测到,这种现象被称为赝能隙。赝能隙的起源和性质可以为解答高温超导的机理问题提供关键线索。学术界普遍认为主要存在两种可能的赝能隙机制:一是来源于超导相变温度以上的电子多体预配对;二是来源于在高温超导体中发现的多种量子有序相,例如反铁磁序、条纹序和配对密度波等。但由于真实的高温超导材料体系非常复杂,各种可能的机制来源相互竞争,一直无法明确究竟是何种机制在起作用。强相互作用(幺正)极限下的超冷费米气体以其纯净性和可控性为赝能隙的机理研究提供了一个理想的量子模拟平台。一方面,费米原子之间的强吸引相互作用为多体配对创造了有利条件;另一方面,该体系可以避免多种量子有序相之间的竞争。因此,能否在该体系中观测到赝能隙,将成为对多体配对机制的决定性验证。然而,这一科学目标的实现面临着两项重大技术挑战,也是以往的工作一直未能取得突破的原因:首先,需要制备高品质、密度均匀的幺正费米气体;其次,要在超冷原子体系中开发类似角分辨光电子能谱的测量技术。经过多年的艰苦攻关,研究团队建立了超冷锂-镝原子量子模拟平台,实现了世界领先的均匀费米气体的制备。研究团队还发展了大磁场的稳定技术,在约700 G的磁场下,其短期波动优于25 μG,相对磁场稳定度接近10-8,比以往国际上的最优结果提升了一个数量级以上。在该超稳磁场下,研究团队得以成功实现超冷原子动量可分辨的微波谱学技术。在此基础上,研究团队系统地测量了不同温度下的幺正费米气体的单粒子谱函数,并成功观测到了赝能隙的存在,为电子预配对假说提供了支持(如图2所示)。图2.单粒子谱示意。连接和独立的小球分别代表库珀对和单粒子,曲面间隙为赝能隙。/制图:陈磊该研究工作不仅推进了强关联多体系统的研究,也为完善多体理论提供了重要的实验依据。此外,该工作中发展的超冷原子量子调控技术为下一步研究其它重要的凝聚态物理现象,如单带超流、条纹相、FFLO超流等奠定了技术基础。Nature杂志的审稿人一致认为,“这项工作解决了一个长期存在的重要物理问题,是量子模拟研究的里程碑进展。”中国科大相关研究团队近年来在基于超冷原子的量子模拟方面开展了卓有成效的工作,已先后在Nature和Science发表了10篇高质量论文。在前期技术积累的基础上,超冷原子量子模拟已经开始显现出揭示包括高温超导机制在内的复杂物理系统规律的显著效用,为在近期构建具备解决实际问题能力的专用量子模拟机铺平了道路。斯威本科技大学胡辉和中国科学技术大学陈启瑾是该工作的理论合作者。本项研究获得了科技部、国家自然科学基金委、中科院、安徽省、上海市和新基石科学基金会等的支持。论文链接: ... PC版: 手机版:

相关推荐

封面图片

我国首次成功构建超越经典计算机的量子模拟器

我国首次成功构建超越经典计算机的量子模拟器 经过十多年科研攻关,中国科学技术大学潘建伟院士团队成功构建了求解费米子哈伯德模型的超冷原子量子模拟器,以超越经典计算机的模拟能力首次验证了该体系中的反铁磁相变,朝向获得该模型低温相图、理解高温超导机理迈出了重要的第一步,也全新打开了构建专用量子模拟机的大门。相关研究成果于 7 月 10 日在国际学术期刊《自然》发表。

封面图片

潘建伟团队成功构建求解费米子哈伯德模型的超冷原子量子模拟器

潘建伟团队成功构建求解费米子哈伯德模型的超冷原子量子模拟器 相关研究成果于7月10日在线发表在国际学术期刊《自然》杂志上。“天元”量子模拟器示意。红色和蓝色的小球分别代表自旋相反的原子,它们在三维空间交错排列,形成了反铁磁晶体。原子被光晶格囚禁在玻璃真空腔中。据介绍,费米子哈伯德模型是晶格中电子运动规律的最简化模型,被认为是有希望解释高温超导机理这一困扰物理学界近四十年难题的核心物理模型。一旦理解其物理机制,就能够规模化地设计、生产和应用新型的高温超导材料,在电力传输、医学、超算等领域产生变革性影响。潘建伟院士介绍,量子计算为求解若干经典计算机难以胜任的计算难题提供了全新的方案。此次潘建伟院士团队结合前期研究成果,实现了最低温度的均匀费米简并气体制备,满足了实现反铁磁相变所需要的低温。并进一步创造性地将盒型光势阱和平顶光晶格技术相结合,实现了空间均匀的费米子哈伯德体系的绝热制备。在此基础上,研究团队通过精确调控相互作用强度、温度和掺杂浓度,成功构建出求解费米子哈伯德模型的超冷原子量子模拟器,直接观察到反铁磁相变的确凿证据自旋结构因子在相变点附近呈现幂律的临界发散现象。从而首次验证了费米子哈伯德模型包括掺杂条件下的反铁磁相变。该工作推进了对费米子哈伯德模型的理解,不仅是理解高温超导机理的有效途径,也是量子计算研究的重大突破。 ... PC版: 手机版:

封面图片

经过十多年科研攻关,中国科学技术大学潘建伟院士团队成功构建了求解费米子哈伯德模型的超冷原子量子模拟器,以超越经典计算机的模拟能力

经过十多年科研攻关,中国科学技术大学潘建伟院士团队成功构建了求解费米子哈伯德模型的超冷原子量子模拟器,以超越经典计算机的模拟能力首次验证了该体系中的反铁磁相变,朝向获得该模型低温态相图、理解高温超导机理迈出了重要的第一步,也全新打开了构建专用量子模拟机的大门。相关研究成果于 7 月 10 日在国际学术期刊《自然》发表。(央视新闻)

封面图片

中国科大首次实现光子的分数量子反常霍尔态

中国科大首次实现光子的分数量子反常霍尔态 成果示意图。16个非线性“光子盒”阵列囚禁的微波光子强相互作用形成分数量子反常霍尔态。霍尔效应是指当电流通过置于磁场中的材料时,电子受到洛伦兹力的作用,在材料内部产生垂直于电流和磁场方向的电压。反常霍尔效应是指无需外部磁场的情况下观测到相关效应。分数量子霍尔态展现出非平庸的多体纠缠,对其研究所衍生出的拓扑序、复合费米子等理论成果逐渐成为多体物理学的基本模型。与此同时,分数量子霍尔态可激发出局域的准粒子,这种准粒子具有奇异的分数统计和拓扑保护性质,有望成为拓扑量子计算的载体。传统的量子霍尔效应实验研究采用“自顶而下”的方式,即在特定材料的基础上,利用该材料已有的结构和性质实现制备量子霍尔态。通常情况下,需要极低温环境、极高的二维材料纯净度和极强的磁场,对实验要求较为苛刻。此外,传统“自顶而下”的方法难以对系统微观量子态进行单点位独立地操控和测量,一定程度上限制了其在量子信息科学中的应用。人工搭建的量子系统结构清晰,灵活可控,是一种“自底而上”研究复杂量子物态的新范式。其无需外磁场,通过变换耦合形式即可构造出等效人工规范场;通过对系统进行高精度可寻址的操控,可实现对高集成度量子系统微观性质的全面测量,并加以进一步可控的利用。这类技术被称为量子模拟,是“第二次量子革命”的重要内容,有望在近期应用于模拟经典计算困难的量子系统并达到“量子计算优越性”。据介绍,此前,国际上已经基于其开展了一些合成拓扑物态、研究拓扑性质的量子模拟工作。然而,由于以往系统中耦合形式和非线性强度的限制,人们一直未能在二维晶格中为光子构建人工规范场。为解决这一重大挑战,研究团队在国际上自主研发并命名了一种新型超导量子比特Plasmonium,打破了目前主流的Transmon(传输子型)量子比特相干性与非简谐性之间的制约,用更高的非简谐性提供了光子间更强的排斥作用。进一步,团队通过交流耦合的方式构造出作用于光子的等效磁场,使光子绕晶格的流动可积累Berry(贝里)相位,解决了实现光子分数量子反常霍尔效应的两个关键难题。同时,这样的人造系统具有可寻址、单点位独立控制和读取,以及可编程性强的优势,为实验观测和操纵提供了新的手段。在该项工作中,研究人员观测到了分数量子霍尔态独有的拓扑关联性质,验证了该系统的分数霍尔电导。同时,他们通过引入局域势场的方法,跟踪了准粒子的产生过程,证实了准粒子的不可压缩性质。《科学》杂志审稿人高度评价这一工作,认为这一工作“是利用相互作用光子进行量子模拟的重大进展”“一种新颖的局域单点控制和自底而上的途径”。诺贝尔物理学奖得主Frank Wilczek评价,这种“自底而上”、用人造原子构建哈密顿量的途径是一个“非常有前途的想法”,这是一个令人印象深刻的实验,为基于任意子的量子信息处理迈出了重要一步。沃尔夫奖获得者Peter Zoller评价,“这在科学和技术上都是一项杰出的成就” “实现这样的目标是多年来全球顶级实验室竞争的量子模拟的圣杯之一”。 ... PC版: 手机版:

封面图片

科学家发现新型二维量子材料 质量增加100倍

科学家发现新型二维量子材料 质量增加100倍 "CeSiI中的电子比普通材料中的电子质量大100倍。这就是它们被称为重费米子的原因。"这项研究背后的乌普萨拉大学研究人员之一Chin-Shen Ong说:"CeSiI的特别之处在于,这种有效质量是各向异性的,它取决于电子在原子层中移动的方向。"瑞典乌普萨拉大学物理与天文学系研究员Chin-Shen Ong。资料来源:乌普萨拉大学这项研究是乌普萨拉大学材料理论研究人员与美国哥伦比亚大学研究人员的合作成果。对于乌普萨拉大学的材料研究人员来说,主要问题是从理论上研究材料中电子的量子特性。重费米子的背景和意义重费米子化合物是一类电子相互作用异常强烈的材料。在此过程中,它们在所谓的量子波动中协调运动。这种相互作用使电子的质量比普通材料中的电子大 100 或 1000 倍。这些量子波动被认为在许多至今无法解释的量子现象中发挥了重要作用,如非常规超导现象(电流可以通过材料而不损失能量)和磁性。这种新型量子材料是在哥伦比亚大学实验室合成的,其独特之处在于它具有类似二维的晶体结构,各层之间有明显的分离,原子厚度很薄。这些层由铈、硅和碘(CeSiI)组成,是首例具有重费米子的二维材料。有关重费米子材料的研究已经进行了几十年,但直到现在,研究重点仍是原子紧密排列成三维结构的材料。早在 20 世纪 70 年代,乌普萨拉大学的研究人员就开始重点研究铈基材料,并取得了巨大成功。然而,由哥伦比亚大学实验室合成的这种新材料却独一无二,因为它具有类似二维的晶体结构,各层之间有明显的分离,原子厚度很薄。这些层由铈层、硅层和碘层(CeSiI)组成,是首例具有重费米子的二维材料。"有了这一发现,我们现在有了一个大大改进的材料平台,可以用来研究相关电子结构。二维材料就像乐高积木。我们的合作伙伴已经在着手添加其他二维材料的层,以创造出一种具有定制量子特性的新材料,"Chin-Shen Ong 说。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

麻省理工学院物理学家首次捕捉到超流体"第二声音"的直接图像

麻省理工学院物理学家首次捕捉到超流体"第二声音"的直接图像 麻省理工学院的物理学家首次捕捉到了"第二声音"的直接图像,即在超流体中来回晃动的热量运动。这些成果将拓展科学家对超导体和中子星中热流的理解。资料来源:Jose-Luis Olivares,麻省理工学院麻省理工学院的秒声可视化技术为理解超流体中热量的波状行为及其对各种物质状态的影响开辟了新的道路,拓展了科学家对超导体和中子星中热流的理解。新图像揭示了热量如何像波浪一样来回"晃动",即使材料的物理物质可能以完全不同的方式运动。这些图像捕捉到了热量的纯粹运动,与材料的粒子无关。"这就好比你有一缸水,让其中一半几乎沸腾,"助理教授理查德-弗莱彻打了个比方。"如果你接着观察,水本身可能看起来完全平静,但突然另一边热了,然后另一边又热了,热量来回流动,而水看起来完全静止。"在托马斯-弗兰克物理学教授马丁-茨维尔莱因(Martin Zwierlein)的领导下,研究小组将超流体中的秒声进行了可视化。超流体是一种特殊的物质状态,当一团原子被冷却到极低的温度时就会产生超流体,此时原子开始像完全无摩擦的流体一样流动。在这种超流体状态下,理论家们预测热量也应该像波浪一样流动,不过科学家们直到现在才能够直接观察到这种现象。简单动画中描述的第一种声音是密度波形式的普通声音,其中正常流体和超流体一起振荡。图片来源:研究人员提供第二种声音是热量的运动,超流体和普通流体相互"撞击",同时保持密度不变。图片来源:研究人员提供最近在《科学》杂志上发表的这项新成果将帮助物理学家更全面地了解热量是如何在超流体和其他相关材料(包括超导体和中子星)中流动的。"我们这团比空气稀薄一百万倍的气体与高温超导体中电子的行为,甚至是超密集中子星中的中子的行为之间存在着紧密的联系,"Zwierlein 说。"现在,我们可以纯粹地探测我们系统的温度响应,这让我们了解到一些很难理解甚至很难触及的东西。"Zwierlein和Fletcher在这项研究中的合作作者包括第一作者、前物理学研究生颜振杰、前物理学研究生Parth Patel和Biswaroop Mukherjee,以及澳大利亚墨尔本斯威本科技大学的Chris Vale。麻省理工学院的研究人员是麻省理工学院-哈佛大学超冷原子中心(CUA)的成员。当原子云被降到接近绝对零度的温度时,它们会转变为罕见的物质状态。Zwierlein 在麻省理工学院的研究小组正在探索超冷原子之间出现的奇异现象,特别是费米子通常相互避开的粒子,如电子。然而,在某些条件下,费米子可以发生强烈的相互作用并配对。在这种耦合状态下,费米子可以以非常规的方式流动。在最新的实验中,研究小组采用了费米子锂-6 原子,将其困住并冷却至纳开尔文温度。1938年,物理学家拉斯洛-蒂萨(László Tisza)提出了超流体的双流体模型超流体实际上是某种正常粘性流体和无摩擦超流体的混合物。这种两种流体的混合物可以产生两种类型的声音,即普通密度波和特殊温度波,物理学家列夫-朗道后来将其命名为"第二声音"。由于流体在某个临界超冷温度下会转变为超流体,麻省理工学院的研究小组推断,这两种流体的热量传输方式也应该不同:在普通流体中,热量应该像往常一样散失,而在超流体中,热量可以像波一样移动,类似于声音。Zwierlein说:"秒声是超流性的标志,但在超冷气体中,迄今为止你只能在密度涟漪的微弱反射中看到它,而热浪的特征以前一直无法证实"。团队试图分离并观察第二种声音,即热的波状运动,与超流体中费米子的物理运动无关。为此,他们开发了一种新的热成像方法一种热映射技术。在传统材料中,人们会使用红外线传感器对热源进行成像。但在超低温下,气体不会发出红外线辐射。相反,研究小组利用射频来"观察"热量如何在超流体中移动。他们发现,锂-6费米子会根据不同的温度产生不同的射频共振:当云的温度较高,携带的正常液体较多时,共振频率较高。云中温度较低的区域共振频率较低。研究人员使用较高的共振无线电频率,促使液体中任何正常、"热"的费米子响应响铃。随后,研究人员就能锁定共振费米子,并随着时间的推移追踪它们,从而制作出"电影",揭示热的纯粹运动类似于声波的来回晃动。Zwierlein说:"我们第一次可以在这种物质冷却到超流体临界温度时对其进行拍照,并直接看到它是如何从热平衡无聊的普通流体转换到热量来回滑动的超流体的。"这些实验标志着科学家们首次能够直接对超流体量子气体中的秒声和纯热运动进行成像。研究人员计划扩展他们的工作,以更精确地绘制热在其他超冷气体中的行为。研究成果可以推广到预测热量如何在其他强相互作用的材料中流动,比如在高温超导体和中子星中,精确测量这些系统的导热性,并希望了解和设计出更好的系统。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人