试验中的脱碳集装箱将78%的轮船航行排放物转化为可出售的石灰石

试验中的脱碳集装箱将78%的轮船航行排放物转化为可出售的石灰石 Seabound 的小型原型系统本身可以装在几个集装箱里,只占用船上很小的空间。它被设计为一种改装装置,可安装在船舶的排气管上,以捕捉肮脏的船用柴油燃烧时排放的二氧化碳和硫。废气被推入一堆氧化钙中,这也被称为生石灰,是一种相对廉价和丰富的材料,广泛应用于全球的建筑、农业和其他领域。二氧化碳在室温下很容易与生石灰发生反应,生成碳酸钙或石灰石,因此这些颗粒能牢牢地结合并捕捉二氧化碳。原型机只占机上很小的空间,不过全尺寸版本可能要大得多如果在北美买卖生石灰,去年年底的价格约为每吨 200 美元,而食品级碳酸钙的售价则高达每吨 727 美元,欧洲购买工业级石灰的价格为每吨 340 美元,虽然我们怀疑从船用柴油机尾气中直接提取的石灰可能品质上还不够格。问题的关键在于:通过捕捉烟囱排放的废气并将其储存在颗粒中,该系统利用廉价商品将其转化为更有价值的商品,从而提供收入流,帮助抵消系统运行的资本和运营成本。石灰石颗粒可在港口卸载和销售在集装箱船上的几个月里,年轻的 Seabound 团队进行了一系列测试,逐步提高了排放捕获率,直到碳捕获效率达到 78%,硫捕获率超过 90%,但该团队表示,该系统最终能够以最有效的形式捕获高达 95% 的排放物。摄制组将这次试航拍摄成了一部短片,介绍了更多情况:在测试过程中,原型机每天捕获约 1 吨的二氧化碳排放量,因此它肯定无法捕获整个废气羽流。一艘中型集装箱船可能装载约 15 万吨货物,每天可能在海上排放约 600 吨二氧化碳。捕捉到其中的 95%,就能增加排放量。退一步讲,让我们从中国到美国西海岸进行一次为期 15 天的快速旅行。按照 95% 的捕集率计算,最终将捕集 8550 吨二氧化碳。生石灰的理论最大捕集率为78.6%,因此需要近 11000 吨生石灰,再加上储存容器的重量,以及系统本身的重量......,这很容易就会达到船舶额定吨位的五分之一左右,而有的航程是这个数字的三倍。这绝不是诋毁 Seabound 公司的做法,只是为了说明解决问题的难度。货轮的碳排放量约占全球碳排放总量的 3%,是一个极难去碳化的排放源。氨、甲醇和其他更清洁的解决方案正在取得进展,但没有简单的解决办法。像这样的船载碳捕集解决方案可以在未来几十年的过渡时期发挥重要作用,我们祝愿 Seabound 团队在实现这一想法的过程中一切顺利。Seabound 公司首席执行官兼联合创始人阿丽莎-弗雷德里克松(Alisha Fredriksson)在一份新闻稿中说:"我们的试点项目表明,我们可以用一种简单而经济有效的方式直接在船上捕获碳排放。这一突破表明,航运业不必等待新的燃料或解决方案来减少未来的排放量,我们今天就可以开始从现有船队中捕获碳排放。" ... PC版: 手机版:

相关推荐

封面图片

中国将建立电力二氧化碳排放因子常态化发布机制

中国将建立电力二氧化碳排放因子常态化发布机制 中国生态环境部、国家统计局发布公告称,将建立电力二氧化碳排放因子常态化发布机制,并拟于2024年尽早发布2022年电力二氧化碳排放因子。 根据《人民日报》星期二(4月16日)报道,中国生态环境部、国家统计局发布《关于发布2021年电力二氧化碳排放因子的公告》。 此次发布的2021年电力二氧化碳排放因子,分为三种口径,包括2021年全国、区域及省级电力平均二氧化碳排放因子,2021年全国电力平均二氧化碳排放因子(不包括市场化交易的非化石能源电量)和2021年全国化石能源电力二氧化碳排放因子。 据介绍,电力二氧化碳排放因子是核算电力消费二氧化碳排放量的重要基础参数。本次发布的电力二氧化碳排放因子可供不同主体核算电力消费的二氧化碳排放量时参考使用,是落实《关于加快建立统一规范的碳排放统计核算体系实施方案》中“统筹推进排放因子测算”要求的重要举措,为碳排放核算提供基础数据支撑。 公告说,下一步,生态环境部、国家统计局将建立电力二氧化碳排放因子常态化发布机制。根据基础数据更新情况,拟于2024年尽早发布2022年电力二氧化碳排放因子。 2024年4月16日 8:16 PM

封面图片

新型反应堆系统将二氧化碳转化为可用燃料

新型反应堆系统将二氧化碳转化为可用燃料 锅炉的效率通常很高。因此,仅靠提高燃烧效率很难减少二氧化碳排放。因此,研究人员正在探索其他方法,以减轻锅炉排放的二氧化碳对环境的影响。为此,一个很有前景的策略是捕获这些系统排放的二氧化碳,并将其转化为有用的产品,如甲烷。要实施这一战略,需要一种特殊类型的膜反应器,即分配器型膜反应器(DMR),它既能促进化学反应,又能分离气体。虽然 DMR 已在某些行业中使用,但其在将二氧化碳转化为甲烷方面的应用,尤其是在锅炉等小型系统中的应用,仍相对较少。由日本芝浦工业大学的野村干弘教授和波兰 AGH 科技大学的 Grzegorz Brus 教授领导的一组日本和波兰研究人员填补了这一研究空白。他们的研究成果最近发表在《二氧化碳利用期刊》上。来自日本和波兰的研究人员开发出一种反应堆设计,可有效捕捉二氧化碳排放并将其转化为可用的甲烷燃料。这一突破可大幅减少温室气体排放,为实现碳中和的未来铺平道路。资料来源:日本 SIT 的野村干弘教授研究小组双管齐下,通过数值模拟和实验研究来优化反应器设计,以便将小型锅炉中的二氧化碳高效转化为甲烷。在模拟过程中,研究小组模拟了气体在不同条件下的流动和反应。这反过来又使他们能够最大限度地减少温度变化,确保在甲烷生产保持可靠的同时优化能源消耗。研究小组还发现,与将气体导入单一位置的传统方法不同,分布式进料设计可以将气体分散到反应器中,而不是从一个地方送入。这反过来又能使二氧化碳更好地分布在整个膜中,防止任何位置过热。野村教授解释说:"与传统的填料床反应器相比,这种 DMR 设计帮助我们将温度增量降低了约 300 度。"除了分布式进料设计,研究人员还探索了影响反应器效率的其他因素,并发现一个关键变量是混合物中的二氧化碳浓度。改变混合物中的二氧化碳含量会影响反应的效果。"当二氧化碳浓度为 15%左右(与锅炉中的二氧化碳浓度相似)时,反应器生产甲烷的效果要好得多。事实上,与只有纯二氧化碳的普通反应器相比,它能多产生约 1.5 倍的甲烷,"野村教授强调说。此外,研究小组还研究了反应器尺寸的影响,发现增大反应器尺寸有助于为反应提供氢气。不过,需要考虑一个折衷的问题,因为提高氢气可用性的好处需要谨慎的温度管理,以避免过热。因此,这项研究为解决温室气体排放的主要来源问题提供了一个前景广阔的解决方案。通过利用 DMR,可以成功地将低浓度二氧化碳排放转化为可用的甲烷燃料。由此获得的益处不仅限于甲烷化,还可应用于其他反应,从而使这种方法成为高效利用二氧化碳的多功能工具,甚至适用于家庭和小型工厂。这项研究得到了波兰国家机构、克拉科夫 AGH 大学和日本科学促进会的资助。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

记者从生态环境部了解到,全国碳排放权交易市场7月16日启动上线交易。发电行业成为首个纳入全国碳市场的行业,纳入重点排放单位超过2

记者从生态环境部了解到,全国碳排放权交易市场7月16日启动上线交易。发电行业成为首个纳入全国碳市场的行业,纳入重点排放单位超过2000家。我国碳市场将成为全球覆盖温室气体排放量规模最大的市场。 根据生态环境部测算,纳入首批碳市场覆盖的企业碳排放量超过40亿吨二氧化碳。 中国碳市场建设从地方试点起步,在北京、天津、上海、重庆、湖北、广东、深圳两省五市开展了碳排放权交易地方试点工作。到2021年6月,试点省市碳市场累计配额成交量4.8亿吨二氧化碳当量,成交额约114亿元。 (新华社)

封面图片

革命性反应器利用粉煤灰将二氧化碳转化为有价值的矿物质

革命性反应器利用粉煤灰将二氧化碳转化为有价值的矿物质 可持续废物管理和二氧化碳封存方面取得了重大进展,研究人员开发出了利用粉煤灰颗粒使二氧化碳矿化的反应器。这种创新方法有望在重新利用工业副产品的同时,为温室气体排放这一关键问题提供可持续的持久解决方案。随着工业化进程的不断推进,二氧化碳排放量也随之激增,而二氧化碳是全球变暖的主要驱动因素。现有的碳捕集、利用和封存(CCUS)技术正努力解决效率和成本问题。粉煤灰作为煤炭燃烧的副产品,为二氧化碳矿化提供了一条前景广阔的途径,既能变废为宝,又能减少排放。然而,现有的反应器设计很难在气体-颗粒相互作用和运行效率之间实现理想的协同效应。这些障碍凸显了对创新反应器配置和运行微调进行深入研究的必要性。反应堆创新研究上海交通大学关于粉煤灰矿化反应器的前沿研究成果于 2024 年 5 月 7 日发表在《储能与节能》杂志上。该研究经过缜密的计算优化,揭示了一种开创性的反应器设计,有望提高二氧化碳捕集和矿化的效率。该研究引入了两种反应器设计,每种设计都经过精心设计,通过粉煤灰实现二氧化碳矿化,并利用计算流体动力学进行优化。撞击式入口设计因其能够放大界面相互作用、延长颗粒停留时间并显著提高矿化率而脱颖而出。图表摘要。图片来源:Duoyong Zhang 等人反之,四边形旋转式进气口可提供流线型气流,实现全面混合并提高反应效率。对操作参数烟气速度、载气速度和颗粒速度的严格研究得出了最佳范围,有望将反应器的性能推向新的高度,确保高效的二氧化碳矿化和反应后的相分离。该研究的首席研究员王立伟博士说:"我们的发现标志着碳捕集与利用技术的重大飞跃。通过改进反应器设计和运行参数,我们实现了二氧化碳矿化效率的大幅飞跃。这项工作不仅对可持续废物管理大有裨益,而且还提出了一项减少工业碳排放的务实战略,与全球气候行动倡议相一致。这项研究对燃煤发电厂有着深远的影响,它为发电厂产生的粉煤灰提供了一种变革性的用途。通过将这种副产品转化为二氧化碳矿化物,这项研究为减少碳排放和减轻粉煤灰处理对环境造成的负担铺平了道路。这项研究的应用范围非常广泛,为废物管理和二氧化碳封存提供了一个和谐的解决方案,很有可能重新定义 CCUS 技术方法。编译自/scitechdaily ... PC版: 手机版:

封面图片

欧盟委员会周三公布了他们迄今为止最富雄心的应对气候变化计划。而在南美,亚马孙盆地的大片区域已从吸收转为排放二氧化碳。

欧盟委员会周三公布了他们迄今为止最富雄心的应对气候变化计划。而在南美,亚马孙盆地的大片区域已从吸收转为排放二氧化碳。 欧盟计划将提高用于取暖、运输和制造的碳排放成本,对之前没有征税的高碳航空和船运燃料征税,并向边境进口商收取水泥、钢铁和铝等产品在国外制造过程中排放的碳的费用。欧盟成员国还被要求种植森林和草原,以阻止二氧化碳进入大气。计划旨在将本十年的绿色目标转化为具体行动,并为其他大型经济体树立榜样。负责欧盟气候政策的弗兰斯·蒂默曼斯在发布会上承认这很难,但表示这是一种义务。 在南美,研究人员报告称,根据过去十年收集的数百个高空空气样本,亚马孙东南部已经从过去吸收和储存二氧化碳的角色转变为二氧化碳的排放来源。研究人员指出,“森林砍伐和退化都减少了亚马孙地区的固碳能力”。此外,气候变化本身导致了旱季温度的增高。而在亚马孙东部,二氧化碳排放量在旱季要远远超过其吸收量。 (路透社,法新社)

封面图片

2023年全球二氧化碳排放量飙升至创纪录水平

2023年全球二氧化碳排放量飙升至创纪录水平 根据一个国际科学家小组的估计,化石燃料产生的二氧化碳排放量在2023年再次上升,达到创纪录的水平。科学家们说,石油、煤炭和天然气燃烧产生的排放量持续上升,阻碍了限制全球变暖的进程。全球碳预算评估这一发现是一项名为"全球碳预算"的地球碳循环年度检查的一部分。在这项年度评估中,科学家们量化了燃烧化石燃料和土地利用变化给大气增加了多少碳,以及从大气中清除并储存在陆地和海洋中的碳有多少。科学家对2023 年数据的早期分析表明,2023 年化石燃料的排放量比 2022 年增加了 1.1%,使 2023 年化石燃料的二氧化碳总排放量达到了 368 亿吨。如果将其他来源(如加拿大的森林砍伐和极端野火季节)包括在内,2023 年的总排放量估计为 409 亿吨。分析显示,2023 年和 2022 年化石燃料产生的二氧化碳排放量都创下了历史新高。气候影响和研究成果报告合著者、美国宇航局戈达德太空飞行中心科学家本-保尔特说:"排放的方向是错误的,我们需要限制全球变暖。大气中的二氧化碳浓度已从工业时代开始的 1750 年的约百万分之 278 上升到 2023 年的百万分之 420。"导致地球气温飙升的主要原因是二氧化碳和其他温室气体的增加。2023 年的全球地表温度比美国国家航空航天局基准期(1951-1980 年)的平均温度高出 1.2摄氏度(2.1华氏度),成为有记录以来最热的一年。上面的可视化图像显示了 2021 年(可获得数据的最近一整年)二氧化碳进入、围绕和流出地球大气层的情况。它们依靠的是美国宇航局的戈达德地球观测系统(GEOS),这是一个用于研究地球天气和气候的建模和数据同化系统。为了描绘碳排放或吸收的位置,研究人员使用了植被、人口密度以及野火、发电厂、公路、铁路和其他基础设施位置的数据。可视化显示的二氧化碳主要来自四个方面:化石燃料(黄色)、生物质燃烧(红色)、陆地生态系统(绿色)和海洋(蓝色)。虽然陆地和海洋都是碳汇这意味着它们通过从大气中清除二氧化碳而储存的碳多于排放的碳但在某些时间和地点,它们也可能是碳源。绿点和蓝点代表被陆地和海洋吸收的碳。海洋和陆地吸收"令人惊讶的是,海洋和陆地继续吸收我们排放的碳的一半左右,"保尔特说。"每年只有约 44% 的排放量留在大气中,减缓了气候变化的速度,但却造成海洋酸化,改变了陆地生态系统的功能。"在过去的 60 年中,即使人类造成的排放量持续增加,停留在大气中的二氧化碳比例(即空气中的部分)仍然保持着惊人的稳定。但是,科学家们对这种稳定是否会持续以及会持续多久提出了质疑。美国国家海洋和大气管理局(NOAA)领导的一项研究发表于 2023 年,该研究分析了二十年来海洋中的碳储存情况,发现有证据表明这种碳汇可能正在失去部分储存能力。他们推测,由于海洋已经积累了大量的二氧化碳,因此海洋的吸收速度已经放缓。全球海洋环流的变化可能会减少从表层水转移到海底的碳量,而碳可以在海底储存数百年。上图显示了从 1960 年到 2023 年全球碳循环的综合组成。它显示了化石燃料(黄色)和土地利用变化(橙色)排放了多少碳,以及大气(紫色)、海洋(蓝色)或陆地(绿色)吸收了多少碳。全球碳循环与排放趋势全球碳预算依靠多种数据来源来绘制地球碳循环的完整图景。主要数据来源是各国政府和能源机构收集的排放清单。美国国家航空航天局(NASA)的 OCO-2(轨道碳观测站-2)仪器提供的卫星数据也被用来估算陆地和大气之间的碳通量。报告显示,包括欧洲和美国在内的一些地区的二氧化碳排放量略有下降,但全球排放量仍在上升。2023 年排放量增幅最大的国家是印度和中国。2015年12月,来自196个国家的代表通过谈判达成了《巴黎协定》,呼吁将全球平均气温控制在"远低于工业化前水平2摄氏度",同时"努力将气温升幅限制在1.5摄氏度以内"。全球碳预算小组还分析了在排放将地球温度推高到 1.5 度之前的剩余碳预算。他们估计,按照目前的排放水平,"全球变暖有50%的可能会在大约7年内持续超过1.5℃"。美国国家航空航天局(NASA)和其他美国联邦机构定期收集温室气体浓度和排放数据,如上图中的可视化数据。这些数据现在可在最近启动的美国温室气体中心获取,该中心由多个机构组成,整合了来自观测和模型的信息,目的是为决策者提供一个数据和分析地点。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人