利用3D打印的"球体" 替代软骨可以长成任何形状

利用3D打印的"球体" 替代软骨可以长成任何形状 为了说明新技术如何能培养出任何形状的软骨细胞,研究小组重新制作了维也纳工业大学的校徽形状科学家们正在研究如何制造人工替代材料,但目前看来没有什么能超越大自然本身的东西。因此,另一个潜在的解决方案是找到利用干细胞再生天然软骨的方法,但这也带来了其他问题,包括如何让干细胞以正确的形状生长,因为干细胞团经常会改变形状或缩小。在这项新研究中,维也纳工业大学团队开发了一种技术,可以将软骨样本培育成所需的任何形状,他们将软骨培育成该大学的校徽。创新的关键不在于干细胞,而在于将它们放入的容器微小、中空的3D打印"球体",它们可以像积木一样相互连接,为内部的软骨干细胞提供支架。该研究的作者奥利弗-科平斯基-格伦瓦尔德(Oliver Kopinski-Grünwald)说:"在显微镜下,你可以非常清楚地看到:相邻的球体生长在一起,细胞从一个球体迁移到另一个球体,反之亦然,它们无缝连接,形成一个没有任何空腔的封闭结构,这与迄今为止使用的其他方法形成了鲜明对比,在这些方法中,相邻的细胞团块之间仍然存在可见的界面。"可为软骨干细胞提供临时支架的 3D 打印球体的电子显微镜图像球体由一种生物相容性塑料材料制成,一开始能提供稳定性和结构,但几个月后就会分解,只留下理想形状的组织。研究小组表示,这将使软骨替代品更有效、更可定制。Kopinski-Grünwald说:"最初的目标是生产出量身定做的小块软骨组织,以便在受伤后将其植入现有的软骨材料中。无论如何,我们现在已经能够证明,我们利用球形微型支架生产软骨组织的方法原则上是可行的,而且与其他技术相比具有决定性的优势。"软骨是这类工作的一个有吸引力的目标不仅因为它是一种人们经常有问题的组织,还因为它相对简单,而且不需要血管。研究人员说,如果能克服在这些定制生长的组织中加入血管这一难题,那么这种技术就能适用于骨骼等其他组织。这项研究发表在《生物材料学报》(Acta Biomaterialia)上。 ... PC版: 手机版:

相关推荐

封面图片

科学家实现利用脂肪组织进行3D生物打印

科学家实现利用脂肪组织进行3D生物打印 一种使用脂肪组织的新型 3D 生物打印方法可以打印分层的活体皮肤和毛囊,有望改善重建手术和毛发生长治疗的效果。 这项专利技术在老鼠身上进行了成功的测试,可以彻底改变治疗皮肤损伤和增强美容手术的方法。该团队的研究结果发表在《生物活性材料》上。 美国专利商标局于二月份授予该团队一项在本研究中开发和使用的生物打印技术的专利。宾夕法尼亚州立大学工程科学与力学、生物医学工程和神经外科教授易卜拉欣·T·奥兹博拉特 (Ibrahim T. Ozbolat) 表示:“用于纠正因受伤或疾病而造成的面部或头部创伤的重建手术通常并不完美,会导致疤痕或永久性脱发。通过这项工作,我们证明了生物打印的全层皮肤具有在老鼠身上生长毛发的潜力。 这距离实现更自然、更美观的人类头部和面部重建又近了一步。”他领导了开展这项工作的国际合作。虽然科学家之前已经对薄层皮肤进行了 3D 生物打印,但 Ozbolat 和他的团队是第一个在术中打印多个皮肤层(包括最底层或皮下组织)的完整生命系统的。 研究人员表示,术中指的是在手术期间打印组织的能力,这意味着该方法可用于更立即、无缝地修复受损皮肤。 顶层作为可见皮肤的表皮在中间层的支撑下自行形成,因此不需要打印。 皮下组织由结缔组织和脂肪组成,为头骨提供结构和支撑。宾夕法尼亚州立大学博士后研究员 Miji Yeo 检查 3D 打印机上的生物墨盒,该打印机专为术中打印皮肤层而开发。 图片来源:米歇尔·比克斯比/宾夕法尼亚州立大学“皮下组织直接参与干细胞变成脂肪的过程,”奥兹博拉特说。 “这个过程对于包括伤口愈合在内的几个重要过程至关重要。 它还在毛囊循环中发挥作用,特别是促进头发生长。”皮肤生物打印的突破研究人员首先从宾夕法尼亚州立大学健康米尔顿·赫尔希医疗中心接受手术的患者身上获取人体脂肪或脂肪组织。 合作者迪诺·J·拉夫尼克 (Dino J. Ravnic) 是宾夕法尼亚州立大学医学院整形外科系的外科副教授,他带领他的实验室获得了用于提取细胞外基质的脂肪细胞外基质是分子和蛋白质的网络,为细胞提供结构和稳定性。 组织制造生物墨水的一种成分。Ravnic 的团队还从脂肪组织中获得了干细胞,如果提供正确的环境,干细胞有可能成熟为几种不同的细胞类型,从而制造另一种生物墨水成分。 每个组件都被加载到生物打印机的三个隔室之一中。 第三个隔室充满了凝血溶液,有助于其他成分正确地结合到受伤部位。“这三个隔室使我们能够在精确控制下共同打印基质-纤维蛋白原混合物和干细胞,”Ozbolat 说。 “我们直接打印到损伤部位,目标是形成皮下组织,这有助于伤口愈合、毛囊生成、温度调节等。”他们获得了皮下组织和真皮层,表皮在两周内自行形成。“我们在大鼠身上进行了三组研究,以更好地了解脂肪基质的作用,我们发现基质和干细胞的共同传递对于皮下组织的形成至关重要,”Ozbolat 说。 “它不能仅对细胞或基质有效地起作用它必须同时起作用。”他们还发现皮下组织含有向下生长,这是早期毛囊形成的初始阶段。 研究人员表示,虽然脂肪细胞不直接参与毛囊的细胞结构,但它们参与毛囊的调节和维护。“在我们的实验中,脂肪细胞可能改变了细胞外基质,以更有利于向下生长的形成,”奥兹博拉特说。 “我们正在努力推进这一目标,以控制密度、方向性和生长的方式使毛囊成熟。”奥兹博拉特表示,在创伤的受伤或患病部位精确生长毛发的能力可能会限制自然重建手术的表现。 他说这项工作提供了一条“充满希望的前进道路”,特别是与他实验室的其他项目相结合,包括打印骨骼和研究如何匹配各种肤色的色素沉着。“我们相信这可以应用于皮肤科、毛发移植以及整形和重建手术它可能会带来更加美观的结果,”奥兹博拉特说。“凭借全自动生物打印能力和临床级兼容材料,这项技术可能会对精确重建皮肤的临床转化产生重大影响。”编译自:ScitechDaily ... PC版: 手机版:

封面图片

首个3D打印的功能性人脑组织能像真实脑组织一样生长

首个3D打印的功能性人脑组织能像真实脑组织一样生长 研究人员用 3D 打印出能像普通脑组织一样生长和运作的脑组织创建一个尽可能接近真实的器官对于探索疾病病理和测试新药的研究至关重要。大脑面临着特殊的挑战,包括在实验室中培育的神经元必须形成功能性连接,而且脑组织需要支持复杂而微妙的结构。威斯康星大学麦迪逊分校(UW-Madison)的研究人员成功地用三维打印技术打印出了能像普通大脑一样生长和运作的脑组织。这项研究的通讯作者张素春说:"这可能是一个非常强大的模型,帮助我们了解人类脑细胞和大脑部分是如何交流的。它可以改变我们看待干细胞生物学、神经科学以及许多神经和精神疾病发病机制的方式。"研究人员的目标是构建分层神经组织,使神经祖细胞(NPC)在层内和层间成熟并形成连接(突触),同时保持结构不变。他们选择了一种主要由纤维蛋白原和凝血酶组成的纤维蛋白水凝胶作为"生物墨水",即用于组织打印的生物材料,因为它与神经细胞具有生物相容性。纤维蛋白原和凝血酶都在凝血过程中发挥作用。纤维蛋白凝胶的高粘度使其难以打印,因此研究人员将其与透明质酸水凝胶混合,放入混合物中的NPC存活和成熟的数量更多,而加入另一种氢使他们的生物墨水比以前使用的生物墨水更柔软。研究人员没有采用传统的垂直叠层三维打印方法(这种方法需要厚层打印坚硬的生物墨水),而是通过水平打印一个薄层或细胞注入凝胶带,将其紧挨另一个薄层或细胞注入凝胶带,从而创建出图案化组织。为了防止打印带混合,研究人员在混合物沉积后立即使用凝血酶作为交联剂。虽然打印的细胞停留在指定的层内,但在打印后的两到五周内,神经元在层内和层间形成了功能性突触连接。张说:"这种组织仍然有足够的结构来支撑在一起,但它又足够柔软,可以让神经元相互生长并开始对话。我们的组织保持相对较薄,这使得神经元很容易从生长介质中获得足够的氧气和养分。"研究人员尝试在生物墨水中使用不同的细胞组合打印脑组织。该研究的第一作者、华大麦迪逊分校张实验室的严元伟研究员"我们打印了大脑皮层和纹状体,我们的发现非常惊人,"张说。"即使我们打印了属于大脑不同部位的不同细胞,它们仍然能够以一种非常特殊和特定的方式相互对话。"研究人员说,他们的方法可以精确控制细胞的类型和排列,而器官组织和其他打印方法则无法做到这一点。而且这种打印技术不需要特殊的设备或培养方法来保持组织的健康,这意味着许多实验室都可以使用这种技术。张说:"我们的实验室非常特别,因为我们能够在任何时候生产几乎任何类型的神经元,然后,我们几乎可以在任何时候以任何方式将它们组合在一起,有一个确定的系统来研究人类大脑网络是如何运作的。研究人员计划对生物墨水和设备进行改进,以便在打印组织中实现特定的细胞定向。"现在,我们的打印机是一台台式商业化打印机,"该研究的主要作者颜元伟说。"我们可以进行一些专门的改进,帮助我们按需打印特定类型的脑组织。"研究人员说,所打印的脑组织可用于研究唐氏综合征的细胞-细胞信号传导、健康组织与受阿尔茨海默氏症影响的组织之间的相互作用、测试新的候选药物,或者只是观察大脑的发育过程。这项研究发表在《细胞干细胞》杂志上。 ... PC版: 手机版:

封面图片

传感器能在 3D 生物打印组织内定位

传感器能在 3D 生物打印组织内定位 据科技日报,以色列特拉维夫大学团队设计并生产了一种受折纸启发的创新结构。该结构可在组织周围折叠,允许将传感器精确插入预定义位置,以检测记录细胞活动和细胞之间的交流。研究成果发表在最新一期《先进科学》杂志上。

封面图片

3D打印钛晶格的强度比WE54航空合金还高出50%

3D打印钛晶格的强度比WE54航空合金还高出50% 新研究的第一作者、特聘教授马迁说:"理想情况下,所有复杂蜂窝材料中的应力都应均匀分布。然而,对于大多数拓扑结构而言,通常只有不到一半的材料主要承受压缩载荷,而较大体积的材料在结构上并不重要。"研究人员在管状晶格的顶部覆盖了第二个晶格,从而加固了管状晶格,并在管和连接处增加了一个薄薄的 X 形横截面,使压缩测试中的载荷分布更加均匀。左图:导致普通空心支柱网格早期失效的过应力点。右图:使用多拓扑网格时,应力分布更加均匀 皇家墨尔本理工大学它的形状非常复杂,但使用激光粉末床熔融 3D 打印机却很容易制造。研究人员对制造出的立方体进行了测试,发现它比航空航天领域使用的密度类似的铸造镁合金 WE54 强 50%。他们说,根据打印机的不同,它的尺寸可以从毫米到几米不等,它的耐温性能最高可达 350 °C,如果升级到更耐热的钛合金,则最高可达 600 °C。研究人员说,这种材料在对强度和重量要求较高的领域非常有用,可能的商业应用包括飞机和火箭部件。有趣的是,他们还表示,这种材料还可用于医用骨植入物,当它与人体融合时,复杂、部分空洞的形状最终可能会被重新生长的骨细胞填满。通过边缘的缝隙可以看到横截面的加固装置但是,如此复杂的结构容易制造吗?研究人员承认:"并不是每个人的仓库里都有激光粉末床熔融机。不过,随着技术的发展,它将变得更容易获得,打印过程也将变得更快,使更多人能够在他们的组件中采用我们的高强度多拓扑超材料。重要的是,金属三维打印技术可以轻松制造出实际应用中的网状形状。"皇家墨尔本理工大学的团队正在呼吁希望在一系列应用领域合作并将这些超材料商业化的公司,并表示将继续完善晶格设计,以寻求更高的强度和更轻的重量。论文发表在《先进材料》杂志上。 ... PC版: 手机版:

封面图片

NASA向空间站发送手术机器人、3D金属打印机等科学研究设备

NASA向空间站发送手术机器人、3D金属打印机等科学研究设备 诺斯罗普-格鲁曼公司的"天鹅座"(Cygnus)太空货运飞船在结束与轨道实验室"团结号"(Unity)太空舱为期四个月的连接后,被Canadarm2机械臂控制着离开国际空间站。图片来源:美国国家航空航天局该公司的"天鹅座"货运飞船计划于 1 月下旬由SpaceX猎鹰 9 号火箭从佛罗里达州卡纳维拉尔角空间站发射升空。金属三维打印机在发射到空间站之前制作的样品。图片来源:欧空局太空 3D 打印欧洲航天局(ESA)的一项研究成果"金属3D打印机"(Metal 3D Printer)测试了微重力环境下小型金属部件的增材制造或3D打印技术。欧空局的罗布-波斯特马(Rob Postema)说:"这项调查让我们初步了解了这种打印机在太空中的表现。3D打印机可以打印出许多形状,我们计划打印一些标本,首先了解太空打印与地球打印的不同之处,其次看看我们可以用这项技术打印出哪些类型的形状。此外,这项活动还有助于展示机组人员如何在太空中安全高效地打印金属零件。"研究结果可提高人们对太空金属三维打印的功能、性能和操作,以及打印部件的质量、强度和特性的认识。补给是未来长时间载人飞行任务的一项挑战。在未来的长期太空飞行以及月球或火星上,乘员可以使用三维打印技术制作设备维护零件,从而减少携带备件的需要,或预测可能需要的每种工具或物品,节省发射时间和金钱。金属三维打印技术的进步还能为地球上的潜在应用带来益处,包括为汽车、航空和航海业制造发动机,以及在自然灾害发生后建造避难所。空中客车防务与航天公司(Airbus Defence and Space SAS)领导的一个小组根据与欧空局签订的合同开展了这项调查。用于 Redwire MSTIC 调查的气体供应模块和生产模块。资料来源:Redwire微重力环境下的半导体制造半导体和薄膜集成涂层制造(MSTIC)研究微重力如何影响用途广泛的薄膜。开发该技术的 Redwire Space 公司的 Alex Hayes 说:"生产具有卓越表面结构的薄膜的潜力,以及从能量收集到先进传感器技术的广泛应用,尤其具有突破性意义。这代表着太空制造领域的一次重大飞跃,可能预示着一个技术进步的新时代,对太空探索和地面应用都具有广泛的影响"。这项技术可以使自主制造取代目前用于制造各种半导体的许多机器和工艺,从而有可能开发出更高效、性能更高的电气设备。在微重力状态下制造半导体器件还可以提高其质量,减少所需的材料、设备和劳动力。在未来的长期任务中,这项技术可以提供在太空生产元件和设备的能力,从而减少从地球进行再补给任务的需要。这项技术还可应用于在地球上收集能量和提供电力的设备。海耶斯说:"虽然最初的试点计划是为了比较地球上和太空中生产的薄膜,但最终目标是扩大到半导体领域的各种生产领域。"艺术家绘制的重返大气层期间的 KREPE-2 号太空舱之一。资料来源:肯塔基大学 A. Martin、P. Rodgers、L. Young、J. Adams模拟重返大气层在空间站上进行研究的科学家通常会将他们的实验品送回地球进行进一步的分析和研究。但是,航天器在重返大气层期间所经历的条件,包括极端高温,可能会对航天器内的物品产生意想不到的影响。用于保护航天器及其内装物的热保护系统是以数值模型为基础的,而这些模型往往缺乏实际飞行的验证,这可能导致对所需系统规模的大幅高估,并占用宝贵的空间和质量。肯塔基再入大气层探测器实验-2(KREPE-2)是改进热保护系统技术工作的一部分,它使用三个装有不同隔热材料和各种传感器的太空舱来获取实际再入大气层条件的数据。肯塔基大学首席研究员亚历山大-马丁说:"在KREPE-1成功的基础上,我们改进了传感器,以收集更多的测量数据,并改进了通信系统,以传输更多的数据。我们有机会测试美国国家航空航天局提供的几个从未测试过的隔热罩,还有一个完全由肯塔基大学制造的隔热罩,这也是第一次"。这些太空舱还可用于其他重返大气层实验,支持改进地球上应用的热屏蔽,例如保护人类和建筑物免受野火伤害。发射前在地面进行测试的手术机器人远程机器人手术机器人手术技术演示测试了一种小型机器人的性能,这种机器人可以从地球上遥控进行外科手术。研究人员计划对微重力和地球上的手术进行比较,以评估微重力的影响以及太空和地面之间的时间延迟。虚拟切口公司(Virtual Incision Corporation)首席技术官 Shane Farritor 说,机器人用两只"手"抓取和切割模拟手术组织,并提供张力,用于确定切割的位置和方式。"较长的太空任务增加了乘员需要外科手术的可能性,无论是简单的缝合还是紧急阑尾切除术。这项调查的结果将有助于开发机器人系统来完成这些手术。此外,从 2001 年到 2019 年,美国农村地区的外科医生数量减少了近三分之一。机器人的微型化和远程控制能力可能有助于随时随地进行手术。美国国家航空航天局(NASA)赞助微型机器人研究已有 15 年之久。2006年,遥控机器人在水下执行了NASA极端环境任务行动(NEEMO)9号任务。2014年,微型手术机器人在零重力抛物线飞机上执行了模拟手术任务。Janus Base 纳米基质可固定软骨细胞(红色)并促进软骨组织基质(绿色)的形成。资料来源:康涅狄格大学在太空中生长软骨组织舱室软骨组织结构展示了两种技术,即 Janus Base Nano-Matrix (JBNm) 和 Janus Base Nanopiece (JBNp)。JBNm 是一种可注射材料,可为微重力环境下软骨的形成提供支架,可作为研究软骨疾病的模型。JBNp 可提供一种基于 RNA 的疗法,以防治导致软骨退化的疾病。软骨的自我修复能力有限,骨关节炎是地球上老年患者致残的主要原因。微重力会引发软骨退化,这种退化与与衰老相关的骨关节炎的进展相似,但发生得更快,因此在微重力环境下进行研究可以更快地开发出有效的疗法。这项研究的结果可以促进软骨再生,从而治疗地球上的关节损伤和疾病,并有助于开发在未来的月球和火星任务中保持软骨健康的方法。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

【3D 打印食品:餐桌上的 10 亿美金新蓝海】目前,应用最为广泛的 3D 食品打印技术是熔融沉积技术。其原理简单来说就是打印机

【3D 打印食品:餐桌上的 10 亿美金新蓝海】目前,应用最为广泛的 3D 食品打印技术是熔融沉积技术。其原理简单来说就是打印机的喷嘴加热原材料使其熔融,同时,食材会随之被挤压到下方的工作平台上,通过层层累积与叠加,最终食材会被「打印」成为具有特定形状的食品。 #抽屉IT

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人