从木浆中提取的新型水凝胶有望用来修补破碎的心脏组织

从木浆中提取的新型水凝胶有望用来修补破碎的心脏组织 普林斯说:"癌症是一种多种多样的疾病,两名患有相同类型癌症的患者对同一种治疗方法的反应往往大相径庭。肿瘤器官组织本质上是患者肿瘤的微型化,可用于药物测试,这可以让研究人员为特定患者开发个性化疗法"。作为普林斯聚合物材料实验室的主任,普林斯为生物医学应用设计合成仿生物水凝胶。这些水凝胶具有纳米纤维结构,并有大孔用于营养物质和废物的运输,从而影响机械性能和细胞相互作用。滑铁卢大学化学工程系教授普林斯利用这些人体组织模拟水凝胶促进了来自捐赠肿瘤组织的小规模肿瘤复制品的生长。她的目标是在对患者进行治疗之前,在微型肿瘤器官组织上测试癌症治疗的有效性,从而有可能实现个性化的癌症治疗。这项研究是与玛格丽特公主癌症中心的戴维-塞斯康(David Cescon)教授合作进行的。滑铁卢大学的普林斯研究小组正在开发类似的生物仿生水凝胶,以用于注射给药和再生医学应用,滑铁卢大学的研究人员将继续引领加拿大的健康创新。她的研究旨在利用注入的丝状水凝胶材料重新生长心脏病发作后受损的心脏组织。她利用纳米纤维作为支架,促进受损心脏组织的再生和愈合。普林斯说:"我们正在我博士期间开始的工作的基础上设计人体组织仿生水凝胶,这种水凝胶可以注入人体,在病人心脏病发作时输送治疗药物并修复对心脏造成的损伤。"Prince 的研究是独一无二的,因为目前用于组织工程或三维细胞培养的大多数凝胶都不具备这种纳米纤维结构。普林斯的研究小组使用纳米粒子和聚合物作为材料的构件,并开发出了能准确模拟人体组织的纳米结构化学。普林斯研究的下一步是利用导电纳米粒子制造导电纳米纤维凝胶,用于治疗心脏和骨骼肌组织。这项创新有望推动再生医学和个性化疗法的发展,为健康创新做出重大贡献。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

哈佛大学开发的水凝胶粘合方法有望带来新型生物材料解决方案

哈佛大学开发的水凝胶粘合方法有望带来新型生物材料解决方案 这幅插图重点展示了两种水凝胶(蓝色显示)如何通过壳聚糖薄膜(橙色显示)以不同方式结合在一起。形成的粘结异常牢固,可以抵抗高张力。资料来源:Peter Allen、Ryan Allen 和 James C. Weaver。在临床实践中,水凝胶已被用于抗病原体的治疗性给药,眼科中的眼内镜、隐形眼镜和角膜假体,组织工程和再生中的骨水泥、伤口敷料、凝血绷带和三维支架。然而,水凝胶聚合物之间的快速强力粘附仍是一项尚未解决的需求,因为传统方法往往会在粘附时间超过预期后导致粘附力减弱,而且依赖于复杂的程序。实现聚合物的快速粘合可以带来许多新的应用,例如,可以对水凝胶的硬度进行微调,使其更好地贴合特定组织;按需封装用于医疗诊断的柔性电子器件;或为身体难以包扎的部位制作自粘性组织包裹。现在,哈佛大学维斯生物启发工程研究所(Wyss Institute for Biologically Inspired Engineering)和哈佛大学约翰-保尔森工程与应用科学学院(John A. Paulson School of Engineering and Applied Sciences,SEAS)的科学家们利用壳聚糖薄膜创造出了一种简单而多用途的方法,可以立即有效地粘合由相同或不同类型的水凝胶和其他聚合物材料制成的层。他们成功地将新方法应用于几个尚未解决的医学问题,包括组织的局部保护性冷却、血管损伤的密封,以及防止本不应相互粘连的身体内部表面发生不必要的"手术粘连"。研究结果发表在《美国国家科学院院刊》上。"壳聚糖薄膜具有在体内和体外有效组装、微调和保护水凝胶的能力,为创造再生医学和外科护理设备提供了许多新机会,"该研究的资深作者、Wyss 研究所创始核心成员 David Mooney 博士说,"壳聚糖薄膜的应用速度快、简便、有效,使其成为用途广泛的工具和组件,可在手术过程中通常很短的时间内完成体内组装过程,并可在制造设施中简单地制造复杂的生物材料结构。"穆尼还是 SEAS 的罗伯特-平卡斯家族生物工程学教授。工程学的新纽带过去几年来,穆尼在威斯研究所和SEAS的团队开发出了"强韧粘合剂",这是一系列再生医学方法,使用可拉伸水凝胶,通过强力粘附在湿组织表面并符合组织的机械特性,促进伤口愈合和组织再生。"精确配制的韧性粘合剂和非粘性水凝胶为我们和其他研究人员提供了改善病人护理的新机会。但是,为了将它们的功能更进一步甚至更多步,我们希望能够将两种或更多水凝胶组合成更复杂的组合体,并以简单的过程快速、安全地实现这一目标,"共同第一作者、前 Wyss 研究助理 Benjamin Freedman 博士说,他与穆尼一起带头开发了几种强韧粘合剂。现有的即时粘合水凝胶或弹性体的方法有明显的缺点,因为它们依赖于有毒胶水、表面化学功能化或其他复杂的程序。通过生物材料筛选方法,研究小组确定了完全由壳聚糖制成的桥接薄膜。壳聚糖是一种含糖聚合物,可以很容易地从贝类的甲壳素外壳中提取出来,目前已被广泛应用于商业领域。例如,它目前被用于处理种子和农业生物杀虫剂、防止酿酒过程中的腐败、自愈合涂料以及医疗伤口管理。研究小组发现,壳聚糖薄膜通过与传统水凝胶粘合方法不同的化学和物理相互作用,实现了水凝胶快速而牢固的粘合。壳聚糖的糖链不是通过单个原子之间的电子共享(共价键)来产生新的化学键,而是通过静电作用和氢键(非共价键)迅速吸收水凝胶层之间的水分,并与水凝胶的聚合物支架缠结在一起,形成多个键。这使得水凝胶之间的粘合力大大超过传统的水凝胶粘合方法。首次应用为了证明他们的新方法具有广泛的潜力,研究人员把重点放在了非常不同的医疗挑战上。他们的研究表明,用壳聚糖薄膜改性的韧性粘合剂现在可以很容易地缠绕在受伤手指等圆柱形物体上,作为自粘绷带提供更好的伤口护理。由于壳聚糖键合水凝胶的含水量高,因此应用这种水凝胶还可以局部冷却下层人体皮肤,这在未来可能会成为烧伤治疗的替代疗法。研究人员还将表面经过壳聚糖薄膜修饰的水凝胶(坚韧的凝胶)无缝地包裹在肠道、肌腱和周围神经组织上,而不与组织本身粘合。"这种方法为在手术过程中有效隔离组织提供了可能,否则会形成'纤维粘连',有时会造成破坏性后果。"Freedman 解释说:"预防纤维粘连是一项尚未满足的临床需求,而商业技术还无法充分满足这一需求。"在另一项应用中,他们在一种坚韧的凝胶上铺设了一层薄薄的壳聚糖薄膜,这种凝胶已经作为伤口密封剂置于受伤的猪主动脉上,以增加绷带的整体强度,因为绷带暴露在血管中血液搏动的周期性机械力之下。"戴夫-穆尼研究小组的这项研究为生物医学水凝胶设备的工程设计增添了一个新的维度,它可以为再生医学和外科医学中尚未解决的紧迫问题提供优雅的解决方案,让许多病人从中受益,"Wyss 创始董事、医学博士唐纳德-英格伯(Donald Ingber)说,他同时也是哈佛医学院和波士顿儿童医院血管生物学朱达-福克曼(Judah Folkman)教授和 SEAS 生物启发工程汉斯约格-威斯(Hansjörg Wyss)教授。编译自/scitechdaily ... PC版: 手机版:

封面图片

创新纳米凝胶被证明可有效治疗脊髓损伤

创新纳米凝胶被证明可有效治疗脊髓损伤 当前治疗方法面临的挑战目前可用于调节急性脊髓损伤后由控制大脑内部环境的成分介导的炎症反应的治疗方法疗效有限。这也是因为缺乏一种能选择性地作用于小胶质细胞和星形胶质细胞的治疗方法。纳米凝胶中枢神经系统选择性药物治疗方案。资料来源:米兰理工大学马里奥-内格里研究所纳米凝胶的开发与功效米兰理工大学开发的纳米载体被称为纳米凝胶,由能与特定目标分子结合的聚合物组成。在这种情况下,纳米凝胶被设计成与神经胶质细胞结合,而神经胶质细胞在急性脊髓损伤后的炎症反应中至关重要。马里奥-内格里医学研究所(Istituto di Ricerche Farmacologiche Mario Negri IRCCS)和米兰理工大学(Politecnico di Milano)的合作表明,纳米凝胶含有一种具有抗炎作用的药物(罗利普兰),能够将神经胶质细胞从损伤状态转变为保护状态,积极促进受伤组织的恢复。研究表明,纳米凝胶对神经胶质细胞具有选择性作用,能有针对性地释放药物,最大限度地发挥药效,并减少可能出现的副作用。见解和未来方向米兰理工大学化学、材料与化学工程系'Giulio Natta'教授菲利波-罗西(Filippo Rossi)解释说:"这项研究的关键在于了解能够在特定细胞群中选择性靶向纳米凝胶的功能基团。这使得通过减少不必要的影响来优化药物治疗成为可能。"马里奥-内格里研究所神经科学系急性脊髓创伤和再生组组长皮埃特罗-维利亚内塞继续说:"研究结果表明,纳米凝胶减少了炎症,提高了脊髓损伤动物模型的恢复能力,部分恢复了运动功能。这些结果为骨髓溶解症患者开辟了新的治疗途径。此外,这种方法还可能有益于治疗阿尔茨海默氏症等神经退行性疾病,因为炎症和神经胶质细胞在这些疾病中发挥着重要作用。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

澳大研发新型纳米酶技术可提高免疫治疗效果

澳大研发新型纳米酶技术可提高免疫治疗效果 #澳门大学 澳门大学健康科学学院副教授赵琦带领的研究团队成功研发出一种新型纳米酶技术,利用重塑肿瘤的微环境来增强嵌合抗原受体(CAR) T细胞的抗肿瘤效果,从而提高病人自身免疫系统抗肿瘤的能力。该研究成果为CAR T细胞治疗实体肿瘤的一个重大突破性的进展,并已获权威学术期刊《Small》刊登。 研究显示,CAR T细胞的过继细胞疗法是一种创新的癌症治疗疗法...

封面图片

在乳清蛋白的帮助下 从电子垃圾中提取黄金突然变得有利可图

在乳清蛋白的帮助下 从电子垃圾中提取黄金突然变得有利可图 在一项新的研究中,来自瑞士苏黎世联邦理工学院的研究人员详细介绍了一种可持续的、具有成本效益的从电子废物中选择性提取黄金的方法。该研究的通讯作者拉法埃莱-梅赞加(Raffaele Mezzenga)说:"我最喜欢的一点是,我们利用食品工业的副产品从电子垃圾中提取黄金。没有比这更可持续的了!"梅赞加所说的食品工业副产品是乳清,即制作奶酪时从凝乳中分离出来的牛奶含水部分。在这里,研究人员将这种乳制品废料转化为蛋白质淀粉样纤维基质,并将其用作吸附剂,选择性地从电子垃圾中提取金。在酸性条件和高温下,乳清蛋白被变性蛋白质的主要结构被破坏,变成更松散、更随意的结构导致它们在凝胶中聚集成纳米纤维。凝胶干燥后形成海绵。利用食品工业副产品从电子垃圾中回收黄金的工艺示意图研究人员从 20 块旧电脑主板中提取了金属部件,并将其溶解在酸浴中,使金属离子化或分离成正离子和负离子。当把蛋白质纤维海绵放入金属离子溶液中时,金离子就会粘在上面。虽然其他金属(例如铜和铁)也能被海绵吸收,但金的吸收效率要高得多。吸收金离子后,蛋白质纤维海绵受热,将离子还原成片状,最终熔化成质量约为 500 毫克的金块。分析表明,金块主要由金构成(90.8 wt%),铜和镍分别占 10.9 wt% 和 0.018 wt%。这些发现表明金块的纯度很高,相当于 21 或 22 克拉。在论文中,研究人员证明了他们的方法在商业上的可行性。包括原材料采购成本和整个过程的能源成本在内,从电子垃圾中回收 1 克黄金的总成本比回收黄金的价值低 50 倍。而且从环保角度来看,这种方法更好。使用传统活性炭从电子垃圾中回收 1 克黄金会产生约 116 克二氧化碳,而蛋白质纤维海绵的碳足迹较低,仅产生约 87 克温室气体。使用活性炭对环境影响较大的主要原因是,活性炭在生产过程中的能耗较高,这主要是由于使用了不可再生的燃料,再加上活性炭的吸附能力低于海绵。以前的提金尝试都有其缺点,例如可扩展性。由于乳清是一种动物性蛋白质,蛋白质纤维海绵可能会比活性炭对生态系统造成更大的破坏。因此,研究人员将探索是否可以用植物性蛋白质(如从豌豆和土豆中提取的蛋白质)代替乳清。研究人员计划将这项技术推向市场。虽然电子垃圾是提取黄金的一个很有前景的起始来源,但他们也在关注其他来源,包括微芯片制造或镀金过程中产生的工业废料。这项研究发表在《先进材料》杂志上。 ... PC版: 手机版:

封面图片

从小鼠细胞中提取的肌肉组织能移动"生物杂交机器人"

从小鼠细胞中提取的肌肉组织能移动"生物杂交机器人" 虽然这些系统具有柔软的外形,但它们的许多部件仍像传统的同类产品一样是刚性的。研究人员正在努力为这些软体机器人引入柔性元件,以创造运动能力。正如麻省理工学院简明扼要地所说,"我们的肌肉是大自然的完美致动器"。不过,该团队的研究并不只是简单地模仿肌肉。该校的研究人员正在使用活体肌肉组织与合成机器人部件结合,制造一种被称为"生物混合"的机器人。麻省理工学院工程学教授里图-拉曼(Ritu Raman)证实了这一过程,并指出:"我们用小鼠细胞构建肌肉组织,然后把肌肉组织放在机器人的骨架上。然后,这些肌肉就充当了机器人的致动器每当肌肉收缩时,机器人就会移动。"肌肉纤维连接到一个被称为"挠曲"的"弹簧状"装置上,该装置是系统的一种骨骼结构。生物肌肉组织很难处理,而且通常难以预测。将其放置在培养皿中,肌肉组织会按预期膨胀和收缩,但不是以可控的方式膨胀和收缩。要在机器人系统中使用,它们必须可靠、可预测和可重复。在这种情况下,就需要使用在一个方向上具有顺应性,而在另一个方向上具有抵抗性的结构。拉曼的团队在马丁-卡尔佩珀教授的麻省理工学院制造实验室找到了解决方案。挠性结构仍需根据机器人的规格进行调整,最终选择了刚度为肌肉组织1/100的结构。拉曼指出:"当肌肉收缩时,所有的力都会转化为该方向的运动。这是一种巨大的放大。"拉曼说,这种肌肉纤维/挠性系统可以应用于各种不同尺寸的机器人,但研究小组的重点是制造超小型机器人,以便有朝一日能在体内进行微创手术。 ... PC版: 手机版:

封面图片

俄罗斯科学家透露:癌症疫苗有望在三年内研制成功

俄罗斯科学家透露:癌症疫苗有望在三年内研制成功 不过,Lazarev没有详细说明可能很快面世的这种疫苗具体针对哪种类型的癌症,也没有说明疫苗的具体作用方式。癌症疫苗是一种针对癌症预防或治疗的生物制剂。与传统的疫苗不同,传统疫苗通过激活免疫系统来预防传染病,而癌症疫苗则旨在通过激活免疫系统来识别和消灭肿瘤细胞。目前,癌症疫苗的研究处于不同的阶段,有些已经被批准用于特定类型的癌症的治疗,而其他的仍在临床试验中。去年,英国政府与德国生物新技术公司BioNTech签署了一项协议,启动提供“个性化癌症治疗”临床试验。丹麦科技生物公司Evaxion1月份宣布,公司将针对新型肿瘤抗原开发定制癌症疫苗。莫德纳和默沙东也在开发实验性癌症疫苗。这些疫苗可能会使用各种不同的机制,包括利用肿瘤相关抗原来激活免疫系统,或者使用病毒载体来递送基因以产生抗原并激活免疫反应。但对肿瘤新抗原的研究开发此前一直面临法律方面的限制,直到最近俄罗斯监管机构才放宽了政策。Lazarev指出,在监管压力有所缓解后,俄罗斯国内的私人投资者也将被这项技术所吸引。此外,他没有提出任何医疗或技术方面的挑战,而是强调了癌症疫苗开发面临的法律限制。需要注意的是,尽管癌症疫苗在理论上具有巨大的潜力,但在临床应用中仍然面临着挑战。癌症是一种非常复杂的疾病,每种类型的癌症都有其独特的特征和挑战,因此研发出有效的癌症疫苗需要长期的研究和临床试验。Lazarev表示:“我不知道制定相关法规的速度有多快,可能需要一年时间才能解决所有监管问题。不过我们有工具,有生产设备,我认为组织起来并不难。”不过,Lazarev强调,虽然研发和生产方面是可行的,但价格方面肯定不会便宜,因为只有专门的癌症研究机构,如莫斯科的Blokhin癌症中心或FMBA的大脑和神经技术中心几个少数机构可以满足生产要求。就在上个月,俄罗斯总统普京也表示,俄罗斯就要研制出癌症疫苗了,作为个人治疗方法投入使用已经是指日可待。普京称:“我们已经非常接近研制出癌症疫苗和新一代免疫调节药物,我希望它们很快就能被有效地作用于个体治疗中。” ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人