哈佛大学开发的水凝胶粘合方法有望带来新型生物材料解决方案

哈佛大学开发的水凝胶粘合方法有望带来新型生物材料解决方案 这幅插图重点展示了两种水凝胶(蓝色显示)如何通过壳聚糖薄膜(橙色显示)以不同方式结合在一起。形成的粘结异常牢固,可以抵抗高张力。资料来源:Peter Allen、Ryan Allen 和 James C. Weaver。在临床实践中,水凝胶已被用于抗病原体的治疗性给药,眼科中的眼内镜、隐形眼镜和角膜假体,组织工程和再生中的骨水泥、伤口敷料、凝血绷带和三维支架。然而,水凝胶聚合物之间的快速强力粘附仍是一项尚未解决的需求,因为传统方法往往会在粘附时间超过预期后导致粘附力减弱,而且依赖于复杂的程序。实现聚合物的快速粘合可以带来许多新的应用,例如,可以对水凝胶的硬度进行微调,使其更好地贴合特定组织;按需封装用于医疗诊断的柔性电子器件;或为身体难以包扎的部位制作自粘性组织包裹。现在,哈佛大学维斯生物启发工程研究所(Wyss Institute for Biologically Inspired Engineering)和哈佛大学约翰-保尔森工程与应用科学学院(John A. Paulson School of Engineering and Applied Sciences,SEAS)的科学家们利用壳聚糖薄膜创造出了一种简单而多用途的方法,可以立即有效地粘合由相同或不同类型的水凝胶和其他聚合物材料制成的层。他们成功地将新方法应用于几个尚未解决的医学问题,包括组织的局部保护性冷却、血管损伤的密封,以及防止本不应相互粘连的身体内部表面发生不必要的"手术粘连"。研究结果发表在《美国国家科学院院刊》上。"壳聚糖薄膜具有在体内和体外有效组装、微调和保护水凝胶的能力,为创造再生医学和外科护理设备提供了许多新机会,"该研究的资深作者、Wyss 研究所创始核心成员 David Mooney 博士说,"壳聚糖薄膜的应用速度快、简便、有效,使其成为用途广泛的工具和组件,可在手术过程中通常很短的时间内完成体内组装过程,并可在制造设施中简单地制造复杂的生物材料结构。"穆尼还是 SEAS 的罗伯特-平卡斯家族生物工程学教授。工程学的新纽带过去几年来,穆尼在威斯研究所和SEAS的团队开发出了"强韧粘合剂",这是一系列再生医学方法,使用可拉伸水凝胶,通过强力粘附在湿组织表面并符合组织的机械特性,促进伤口愈合和组织再生。"精确配制的韧性粘合剂和非粘性水凝胶为我们和其他研究人员提供了改善病人护理的新机会。但是,为了将它们的功能更进一步甚至更多步,我们希望能够将两种或更多水凝胶组合成更复杂的组合体,并以简单的过程快速、安全地实现这一目标,"共同第一作者、前 Wyss 研究助理 Benjamin Freedman 博士说,他与穆尼一起带头开发了几种强韧粘合剂。现有的即时粘合水凝胶或弹性体的方法有明显的缺点,因为它们依赖于有毒胶水、表面化学功能化或其他复杂的程序。通过生物材料筛选方法,研究小组确定了完全由壳聚糖制成的桥接薄膜。壳聚糖是一种含糖聚合物,可以很容易地从贝类的甲壳素外壳中提取出来,目前已被广泛应用于商业领域。例如,它目前被用于处理种子和农业生物杀虫剂、防止酿酒过程中的腐败、自愈合涂料以及医疗伤口管理。研究小组发现,壳聚糖薄膜通过与传统水凝胶粘合方法不同的化学和物理相互作用,实现了水凝胶快速而牢固的粘合。壳聚糖的糖链不是通过单个原子之间的电子共享(共价键)来产生新的化学键,而是通过静电作用和氢键(非共价键)迅速吸收水凝胶层之间的水分,并与水凝胶的聚合物支架缠结在一起,形成多个键。这使得水凝胶之间的粘合力大大超过传统的水凝胶粘合方法。首次应用为了证明他们的新方法具有广泛的潜力,研究人员把重点放在了非常不同的医疗挑战上。他们的研究表明,用壳聚糖薄膜改性的韧性粘合剂现在可以很容易地缠绕在受伤手指等圆柱形物体上,作为自粘绷带提供更好的伤口护理。由于壳聚糖键合水凝胶的含水量高,因此应用这种水凝胶还可以局部冷却下层人体皮肤,这在未来可能会成为烧伤治疗的替代疗法。研究人员还将表面经过壳聚糖薄膜修饰的水凝胶(坚韧的凝胶)无缝地包裹在肠道、肌腱和周围神经组织上,而不与组织本身粘合。"这种方法为在手术过程中有效隔离组织提供了可能,否则会形成'纤维粘连',有时会造成破坏性后果。"Freedman 解释说:"预防纤维粘连是一项尚未满足的临床需求,而商业技术还无法充分满足这一需求。"在另一项应用中,他们在一种坚韧的凝胶上铺设了一层薄薄的壳聚糖薄膜,这种凝胶已经作为伤口密封剂置于受伤的猪主动脉上,以增加绷带的整体强度,因为绷带暴露在血管中血液搏动的周期性机械力之下。"戴夫-穆尼研究小组的这项研究为生物医学水凝胶设备的工程设计增添了一个新的维度,它可以为再生医学和外科医学中尚未解决的紧迫问题提供优雅的解决方案,让许多病人从中受益,"Wyss 创始董事、医学博士唐纳德-英格伯(Donald Ingber)说,他同时也是哈佛医学院和波士顿儿童医院血管生物学朱达-福克曼(Judah Folkman)教授和 SEAS 生物启发工程汉斯约格-威斯(Hansjörg Wyss)教授。编译自/scitechdaily ... PC版: 手机版:

相关推荐

封面图片

从木浆中提取的新型水凝胶有望用来修补破碎的心脏组织

从木浆中提取的新型水凝胶有望用来修补破碎的心脏组织 普林斯说:"癌症是一种多种多样的疾病,两名患有相同类型癌症的患者对同一种治疗方法的反应往往大相径庭。肿瘤器官组织本质上是患者肿瘤的微型化,可用于药物测试,这可以让研究人员为特定患者开发个性化疗法"。作为普林斯聚合物材料实验室的主任,普林斯为生物医学应用设计合成仿生物水凝胶。这些水凝胶具有纳米纤维结构,并有大孔用于营养物质和废物的运输,从而影响机械性能和细胞相互作用。滑铁卢大学化学工程系教授普林斯利用这些人体组织模拟水凝胶促进了来自捐赠肿瘤组织的小规模肿瘤复制品的生长。她的目标是在对患者进行治疗之前,在微型肿瘤器官组织上测试癌症治疗的有效性,从而有可能实现个性化的癌症治疗。这项研究是与玛格丽特公主癌症中心的戴维-塞斯康(David Cescon)教授合作进行的。滑铁卢大学的普林斯研究小组正在开发类似的生物仿生水凝胶,以用于注射给药和再生医学应用,滑铁卢大学的研究人员将继续引领加拿大的健康创新。她的研究旨在利用注入的丝状水凝胶材料重新生长心脏病发作后受损的心脏组织。她利用纳米纤维作为支架,促进受损心脏组织的再生和愈合。普林斯说:"我们正在我博士期间开始的工作的基础上设计人体组织仿生水凝胶,这种水凝胶可以注入人体,在病人心脏病发作时输送治疗药物并修复对心脏造成的损伤。"Prince 的研究是独一无二的,因为目前用于组织工程或三维细胞培养的大多数凝胶都不具备这种纳米纤维结构。普林斯的研究小组使用纳米粒子和聚合物作为材料的构件,并开发出了能准确模拟人体组织的纳米结构化学。普林斯研究的下一步是利用导电纳米粒子制造导电纳米纤维凝胶,用于治疗心脏和骨骼肌组织。这项创新有望推动再生医学和个性化疗法的发展,为健康创新做出重大贡献。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新型"玻璃凝胶"材料具有奇特的强度、伸缩性和粘性

新型"玻璃凝胶"材料具有奇特的强度、伸缩性和粘性 玻璃聚合物是一种塑料,具有类似玻璃的特性强度高、硬度大、刚度高,但通常也比较脆,如果试图弯曲或拉伸就会断裂。凝胶则柔软而有弹性,但也很脆弱。现在,北卡罗来纳大学的研究小组开发出了一种新材料,它结合了这两种材料的优点。该研究的通讯作者迈克尔-迪基(Michael Dickey)说:"我们创造了一类被称为玻璃凝胶的材料,这种材料和玻璃聚合物一样坚硬,但如果施加足够的力,它可以拉伸到原来长度的五倍,而不会断裂。更重要的是,一旦材料被拉伸,你可以通过加热使其恢复原状。此外,玻璃凝胶的表面具有很强的粘附性,这在硬质材料中并不多见。"为了制造玻璃状凝胶,研究小组将玻璃状聚合物的液态前体分子与离子液体结合在一起。然后将混合物倒入模具中,暴露在紫外线下使其固化,最后从模具中取出。这种离子液体起着溶剂的作用,使材料同时具有玻璃和凝胶的功能。迪基说:"通常情况下,当你在聚合物中加入溶剂时,溶剂会推开聚合物链,使聚合物变得柔软、可拉伸。在玻璃凝胶中,溶剂会将聚合物分子链推开,使其像凝胶一样可拉伸。然而,溶剂中的离子会强烈吸引聚合物,从而阻止聚合物链移动。链条无法移动就使其成为玻璃状。最终的结果是,由于吸引力的作用,材料变得坚硬,但由于额外的间距,材料仍然能够拉伸。"尽管按重量计算,这些玻璃凝胶的液体含量超过 54%,但它们的断裂强度达到 42 兆帕、韧性达到 110 兆焦耳/立方米、屈服强度达到 73 兆帕、杨氏模量达到 1 千兆帕。研究小组说,这些数据与聚乙烯等热塑性塑料相似,但与这些材料不同的是,它们还能被拉伸至原始长度的五倍。一种名为玻璃凝胶的新型材料样品玻璃凝胶的其他优点还包括能够自我修复,只要稍微加热就能恢复原状。它们的高液体含量也使它们成为更有效的导电体,而且它们的表面还具有粘合性,但研究小组并不完全清楚其中的原因。最有用的是,这些玻璃凝胶相当容易制造。"制造玻璃态凝胶是一个简单的过程,可以通过在任何类型的模具中固化或 3D 打印来完成,"迪基说。"大多数具有类似机械性能的塑料都需要制造商将聚合物作为原料进行生产,然后将聚合物运输到另一个工厂,在那里聚合物被熔化并形成最终产品。"到目前为止,研究人员还不确定这些玻璃凝胶可能会有哪些应用,但他们相信,这种新材料具有一系列令人感兴趣的特性,最终可能会被证明非常有用。这项研究发表在《自然》杂志上。研究小组在下面的视频中展示了玻璃凝胶。 ... PC版: 手机版:

封面图片

日研发含海藻成分新型水凝胶 能有效治疗伤口

日研发含海藻成分新型水凝胶 能有效治疗伤口 日本研究员基于海藻成分研发出一种新型水凝胶,具有低粘附性和低溶胀率等特性,可在促进皮肤伤口愈合的同时防止皮肤伤口扩张,与传统水凝胶伤口敷料相比,能更有效治疗皮肤伤口。 新华社星期一(12月18日)报道,日本东京理科大学称,研究人员利用海藻中的生物相容性成分开发出一种新型水凝胶,具有与传统水凝胶完全不同的物理特性。 据悉,市面上更为常用的水凝胶伤口敷料,在吸收伤口渗出液时会粘附于皮肤并膨胀,导致伤口拉伸和扩张,不仅会造成疼痛,还增加了因伤口区域扩张而导致细菌感染的风险。 这种新型水凝胶由海藻酸盐、碳酸钙和碳酸水制成。海藻酸盐是一种从海藻中提取的生物相容性成分,关键是它不会与细胞或皮肤组织强力粘附。 由于海藻酸盐和钙离子形成的特殊结构,加上碳酸水中的二氧化碳能起到防止酸化的作用,由此制得的新型水凝胶不仅展现出有利伤口愈合的理想酸碱度和湿度条件,并且与其他已实现商业应用的水凝胶敷料相比,粘附性和溶胀率明显降低。 研究员利用细胞培养实验和小鼠模型实验测试了新型水凝胶的有效性,均取得较理想的结果。 海藻酸盐可从搁浅在海滩的海藻中提取,而海藻通常被视为海岸上的废弃物,是一种可再生资源。研究员指出,由海藻酸盐等材料制得的新型水凝胶不仅成本低廉并且可生物降解,这标志着可持续医学发展的重要一步,并为下一代伤口凝胶提供了新的设计指南。 2023年12月18日 6:25 PM

封面图片

科学家创造出的新材料兼具玻璃聚合物的硬度和凝胶的拉伸性

科学家创造出的新材料兼具玻璃聚合物的硬度和凝胶的拉伸性 研究人员创造了一种名为"玻璃凝胶"的新型材料,这种材料与玻璃聚合物一样坚硬,但如果施加足够的力,它可以拉伸到原长度的五倍,而不会断裂。玻璃态凝胶的一个关键特点是,它们的液体含量超过 50%,这使得它们比具有类似物理特性的普通塑料更能有效导电。资料来源:北卡罗来纳州立大学王美香科学家们发明了一种名为"玻璃凝胶"的新型材料,这种材料尽管含有 50% 以上的液体,但却非常坚硬且不易破裂。加上玻璃凝胶易于生产,这种材料有望应用于多种领域。凝胶体和玻璃态聚合物是历来被视为截然不同的两类材料。玻璃态聚合物质地坚硬,通常比较脆。它们用于制造水瓶或飞机窗户等物品。凝胶(如隐形眼镜)含有液体,柔软而有弹性。"我们创造了一类被称为玻璃凝胶的材料,这种材料和玻璃聚合物一样坚硬,但如果施加足够的力,它可以拉伸到原来长度的五倍,而不会断裂,"这项研究论文的通讯作者、北卡罗来纳州立大学化学和生物分子工程系卡米尔和亨利-德雷福斯教授迈克尔-迪基(Michael Dickey)说。"更重要的是,一旦材料被拉伸,你就可以通过加热使其恢复原状。此外,玻璃凝胶的表面具有很强的粘性,这在硬质材料中并不多见。"该论文的共同第一作者、北卡罗来纳州立大学博士后研究员王美香说:"玻璃凝胶的一个关键特点是,它们的液体含量超过 50%,这使得它们比物理特性相当的普通塑料更能高效导电。考虑到这些材料所具有的许多独特性质,我们对它们的用途感到乐观。"玻璃态凝胶,顾名思义,实际上是一种结合了玻璃态聚合物和凝胶最诱人特性的材料。为了制造玻璃态凝胶,研究人员首先将玻璃态聚合物的液态前体与离子液体混合。将这种混合液体倒入模具中,暴露在紫外线下,使材料"固化"。然后移除模具,留下玻璃状凝胶。"离子液体是一种溶剂,就像水一样,但完全由离子组成,"Dickey 说。"通常在聚合物中添加溶剂时,溶剂会推开聚合物链,使聚合物变得柔软、可伸展。这就是为什么湿隐形眼镜柔软,而干隐形眼镜不柔软的原因。在玻璃态凝胶中,溶剂会将聚合物分子链推开,使其像凝胶一样具有拉伸性。然而,溶剂中的离子会强烈吸引聚合物,从而阻止聚合物链移动。链条无法移动就使其成为玻璃状。最终的结果是,由于吸引力的作用,材料变得坚硬,但由于额外的间距,材料仍然能够拉伸。"研究人员发现,玻璃凝胶可以用各种不同的聚合物和离子液体制成,但并非所有类别的聚合物都能用于制造玻璃凝胶。Dickey说:"带电或极性的聚合物有望用于玻璃凝胶,因为它们会被离子液体吸引。也许玻璃凝胶最吸引人的特点就是它们的粘性,因为虽然我们知道是什么让它们变得坚硬和可拉伸,但我们只能猜测是什么让它们如此具有粘性。"在测试中,研究人员发现,玻璃状凝胶即使含有 50-60% 的液体,也不会蒸发或变干。他们还认为,玻璃凝胶易于制造,因此有望得到实际应用。Dickey 说:"制造玻璃态凝胶是一个简单的过程,可以通过在任何类型的模具中固化或 3D 打印来实现。大多数具有类似机械性能的塑料都要求制造商将聚合物作为原料进行生产,然后将聚合物运输到另一个工厂,在那里聚合物被熔化并形成最终产品。我们很高兴看到如何使用玻璃凝胶,并愿意与合作者一起确定这些材料的应用"。这篇题为"由溶剂增韧的玻璃凝胶"的论文于 6 月 19 日发表在《自然》杂志上。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

哈佛大学工程师发现将橡胶阻力提高10倍的方法

哈佛大学工程师发现将橡胶阻力提高10倍的方法 SEAS 的研究人员开发出一种多尺度方法,使颗粒增强橡胶能够承受高负荷,并在反复使用中抵御裂纹增长。上图中,左侧样品中的裂纹在增长,而右侧样品中的裂纹在经过 350,000 次循环后仍然完好无损,该样品由多尺度材料制成。资料来源:Suo Group/Harvard SEAS这项研究发表在《自然》杂志上。改进微粒增强橡胶天然橡胶乳胶柔软而富有弹性。在包括轮胎、软管和阻尼器在内的一系列应用中,橡胶都是由碳黑和二氧化硅等硬质颗粒加固的。自问世以来,这些微粒大大提高了橡胶的刚度,但并没有提高材料在循环拉伸时的抗裂纹增长能力,这种测量方法被称为疲劳阈值。事实上,自 20 世纪 50 年代首次测量以来,颗粒增强橡胶的疲劳阈值并没有多大改善。这意味着,即使轮胎经过改进,提高了耐磨性并降低了油耗,但细小的裂缝仍会将大量橡胶微粒带入环境中,对人类造成空气污染,并在溪流和河流中积聚。橡胶工程学的新发现在之前的研究中,SEAS 的 Allen E. and Marilyn M. Puckett 力学与材料学教授索志刚领导的研究小组通过延长聚合物链和增加缠结密度,显著提高了橡胶的疲劳阈值。那么颗粒强化橡胶又如何呢?研究小组在高度纠缠的橡胶中加入了二氧化硅颗粒,他们认为颗粒会增加硬度,但不会影响疲劳阈值,正如文献中普遍报道的那样。他们错了。SEAS前研究生、论文共同第一作者杰森-斯特克(Jason Steck)说:"这真是个惊喜。我们没想到添加颗粒会提高疲劳阈值,但我们发现疲劳阈值提高了十倍。Steck 现在是通用电气航空航天公司的研究工程师。"在哈佛团队的材料中,聚合物链很长而且高度纠缠在一起,而微粒则聚集在一起并与聚合物链共价结合。"事实证明,"论文共同第一作者、前 SEAS 研究生 Junsoo Kim 说,"这种材料能在两个长度尺度上分散裂缝周围的应力:聚合物链尺度和颗粒尺度。这种组合阻止了材料中裂缝的生长"。Kim 现为美国西北大学机械工程系助理教授。影响和未来应用研究小组在一块材料上切割出一条裂缝,然后将其拉伸数万次,以此证明了他们的方法。在他们的实验中,裂缝从未扩大。该研究的资深作者索说:"我们的多尺度应力分散方法拓展了材料特性的空间,为减少聚合物污染和制造高性能软机器打开了大门。"哈佛大学技术开发办公室驻校专家、论文合著者雅科夫-库佐夫斯基(Yakov Kutsovsky)说:"设计新型弹性材料的传统方法忽略了利用多尺度应力分散实现高性能弹性材料广泛工业用途的这些关键见解。这项工作中开发和展示的设计原则可适用于广泛的工业领域,包括轮胎和工业橡胶制品等大批量应用,以及可穿戴设备等新兴应用。"编译自/scitechdaily ... PC版: 手机版:

封面图片

创新型新型粘合剂使性能翻倍 有望大大提升电动汽车电池的耐用性

创新型新型粘合剂使性能翻倍 有望大大提升电动汽车电池的耐用性 研究人员用聚(乙烯基膦酸)(PVPA)为锂离子电池中基于微氧化硅(SiO)的电极设计了一种高性能粘合剂,与传统方法相比,这种粘合剂提高了电化学性能和耐用性。资料来源:JAIST Noriyoshi Matsumi日本先进科学技术研究所(JAIST)的 Noriyoshi Matsumi (松见纪佳)教授、博士生 Noriyuki Takamori、前高级讲师 Rajashekar Badam、Tejkiran Pindi Jayakumar 博士(前学生)以及丸善石化有限公司的研究人员最近在 2024 年 2 月 8 日的《ACS 应用能源材料》(ACS Applied Energy Materials)杂志上发表了一项研究、他们利用聚(乙烯基膦酸)(PVPA)作为微型氧化硅电极的粘合剂,实现了比传统电池更优越的性能。PVPA 的卓越性能据松见教授说:"PVPA 粘合剂在延长高性能锂离子二次电池的寿命方面应该非常有用。特别是在电动汽车的应用中,人们对实现锂离子二次电池的长寿命有着浓厚的兴趣。PVPA 的使用将为聚丙烯酸(PAA)和聚偏氟乙烯(PVDF)等市售粘合剂提供更好的替代品"。该研究涉及制造含有 PVPA、PAA 和 PVDF 作为粘合剂的电极,并通过电化学实验和密度泛函理论对其性能进行了评估。与传统的 PAA(2.03 N/m)相比,PVPA 对铜支持物的附着力(3.44 N/m)明显更强,从而显著提高了锂离子电池的耐用性。与 PAA 电池相比,基于 PVPA 的电池在 200 次循环后的放电容量几乎是后者的两倍,基于 PVPA 的半电池在相同的循环次数后可达到 1300 mAhg-1SiO。与 PVDF 或 PAA 粘合剂不同的是,即使经过 200 次充放电循环,扫描电子显微镜也没有观察到集流器剥落。此外,PVPA 更强的附着力有助于稳定基于氧化硅的阳极,即使在体积显著膨胀的情况下也能防止其剥落。合作与专利此外,丸善石化有限公司(其研究人员也是研究的一部分)已经建立了 PVPA 的工业生产流程。JAIST 与丸善石化有限公司之间的持续合作,以及该公司提供的其他电池生产专业技术,可能会进一步加快该工艺在实际生活中的应用。JAIST 和丸善石化有限公司已在国内(日本)和国际上联合申请了该技术的专利。"这种工业上可行的高性能粘合剂将有助于高耐用性和高能量密度电池技术的开发。这将使电动汽车在全球范围内得到更广泛的应用,而无需担心电池性能会在较长时间内下降。未来,这些材料还可应用于火车、轮船、飞机等各种电动汽车。"总之,科学家们利用聚(乙烯基膦酸)为锂离子电池中的氧化硅阳极开发出了一种功能性粘合剂。与传统方法相比,这种低成本粘合剂提高了性能,是电动汽车及其他领域基于微型氧化硅的应用的新进展。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人