洛桑联邦理工学院(EPFL)研究人员实现在室温下控制量子现象

洛桑联邦理工学院(EPFL)研究人员实现在室温下控制量子现象 操作装置的概念图,由两个周期性分割的镜子夹着一个装有纳米柱的鼓组成,使激光能在室温下与鼓产生强烈的量子力学相互作用。图片来源:EPFL 和第二湾工作室传统上,这种观测只能在接近绝对零度的环境中进行,因为那里的量子效应更容易被探测到。然而,对极冷环境的要求一直是一个主要障碍,限制了量子技术的实际应用。现在,EPFL 的托比亚斯-基彭伯格(Tobias J. Kippenberg)和尼尔斯-约翰-恩格尔森(Nils Johan Engelsen)领导的一项研究重新定义了可能的界限。这项开创性工作融合了量子物理学和机械工程,实现了对室温下量子现象的控制。基彭伯格说:"几十年来,实现室温量子光力学一直是一个公开的挑战。我们的工作有效地实现了海森堡显微镜长期以来一直被认为只是一个理论玩具模型。"在今天(2 月 14 日)发表在《自然》杂志上的实验装置中,研究人员创建了一个超低噪声光机械系统一种光与机械运动相互连接的装置,使他们能够高精度地研究和操纵光如何影响移动物体。晶体状空腔镜,中间是鼓。图片来源:Guanhao Huang/EPFL室温的主要问题是热噪声,它会干扰微妙的量子动力学。为了最大限度地减少热噪声,科学家们使用了空腔镜,这是一种专门的反射镜,能在密闭空间(空腔)内来回反弹光线,有效地"捕获"光线,并增强光线与系统中机械元件的相互作用。为了减少热噪声,这些镜子采用了类似晶体的周期性("声子晶体")结构。另一个关键部件是一个 4 毫米的鼓状装置,称为机械振荡器,它在空腔内与光相互作用。它相对较大的尺寸和设计是将其与环境噪声隔离开来的关键,这使得在室温下探测微妙的量子现象成为可能。恩格尔森说:"我们在这项实验中使用的鼓是多年努力的结晶,目的是制造出与环境隔离良好的机械振荡器。""我们用来处理难缠的复杂噪声源的技术,对更广泛的精密传感和测量领域具有重要意义和影响,"领导该项目的两名博士生之一黄冠豪说。这种量子现象是指通过操纵光的某些特性,如强度或相位,来减少一个变量的波动,而以增加另一个变量的波动为代价,正如海森堡原理所规定的那样。通过在他们的系统中演示室温下的光学挤压,研究人员表明,他们可以有效地控制和观察宏观系统中的量子现象,而无需极低的温度。研究小组认为,该系统在室温下运行的能力将扩大量子光机械系统的使用范围,而量子光机械系统是量子测量和量子力学在宏观尺度上的既定试验平台。领导这项研究的另一名博士生阿尔贝托-贝卡里(Alberto Beccari)补充说:"我们开发的系统可能会促进新的混合量子系统,在这种系统中,机械鼓与不同的物体(如被困的原子云)发生强烈的相互作用。这些系统对量子信息非常有用,有助于我们了解如何创建大型复杂量子态。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

洛桑联邦理工学院研究人员在了解水的电子特性方面取得了重大突破

洛桑联邦理工学院研究人员在了解水的电子特性方面取得了重大突破 水分子和与光子吸收产生的激子态相对应的电子密度。图片来源:Krystian Tambur(背景)/Alexey Tal(水分子)即使是当今最精确的电子结构理论也无法厘清这一问题,这意味着一些重要的物理量,如外部电子注入液态水的能量,仍然难以确定。这些特性对于理解电子在水中的行为至关重要,并可能在生物系统、环境循环和太阳能转换等技术应用中发挥作用。在最近的一项研究中,EPFL 的研究人员阿列克谢-塔尔(Alexey Tal)、托马斯-比肖夫(Thomas Bischoff)和阿尔弗雷多-帕斯夸雷洛(Alfredo Pasquarello)在破解这一难题方面取得了重大进展。他们的研究发表在《美国科学院院刊》(PNAS)上,采用了超越当今最先进方法的计算方法来研究水的电子结构。研究人员使用基于"多体扰动理论"的方法对水进行了研究。这是一种复杂的数学框架,用于研究一个系统中多个粒子(如固体或分子中的电子)之间的相互作用,探索这些粒子如何相互影响对方的行为,而不是孤立地,而是作为一个更大的、相互作用的群体的一部分。相对简单地说,多体扰动理论是一种计算和预测多粒子系统特性的方法,它考虑到了系统各组成部分之间所有复杂的相互作用。但是,物理学家用"顶点修正"对理论进行了调整:多体扰动理论中的修正考虑到了粒子之间超出最简单近似的复杂相互作用。顶点修正通过考虑这些相互作用如何影响粒子的能级,如粒子对外部场的响应或粒子的自能,来完善理论。简而言之,顶点修正可以更准确地预测多粒子系统的物理特性。液态水建模尤其具有挑战性。水分子包含一个氧原子和两个氢原子,它们的热运动和原子核的量子性质都起着关键作用。考虑到这些方面,研究人员准确地确定了水的电子特性,如电离势、电子亲和力和带隙。这些发现对于了解水如何在电子层面上与光和其他物质相互作用至关重要。阿尔弗雷多-帕斯夸雷洛(Alfredo Pasquarello)说:"我们对水能级的研究协调了高层理论与实验。得益于对电子结构的先进描述,我们还能够生成精确的吸收光谱。"这些发现还有其他意义。洛桑联邦理工学院团队应用的理论发展为实现材料精确电子结构的普遍适用的新标准奠定了基础。这提供了一种高度预测性的工具,有可能彻底改变我们对凝聚态科学中电子特性的基本认识,并应用于寻找具有特定电子功能的材料特性。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

麻省理工学院研究人员实现前所未有的原子接近度

麻省理工学院研究人员实现前所未有的原子接近度 麻省理工学院的物理学家们开发出了一种技术,可以将原子(用箭头表示的球体)排列得比以前更紧密,最小可达 50 纳米。该研究小组计划利用这种方法将原子操纵到可以产生第一个纯磁性量子门的配置中这是新型量子计算机的关键构件。在这张图片中,磁相互作用由彩色线条表示。图片来源:研究人员提供;麻省理工学院新闻他们通常的做法是将原子冷却到静止状态,然后用激光将粒子排列到相距 500 纳米的位置这个限制是由光波长决定的。现在,麻省理工学院的物理学家们开发出了一种技术,可以将原子排列得更近,最小仅为 50 纳米。一个红血球的宽度约为 1000 纳米。物理学家在镝实验中展示了这种新方法,镝是自然界中磁性最强的原子。他们利用新方法操纵了两层镝原子,并将两层原子精确定位在 50 纳米之间。在这种极端接近的情况下,磁相互作用的强度是相隔 500 纳米的两层原子的 1000 倍。不同颜色的激光用于冷却和捕获镝原子。图片来源:研究人员提供更重要的是,科学家们能够测量原子接近所产生的两种新效应。它们增强的磁力导致了"热化",即热量从一层传递到另一层,以及层间的同步振荡。当原子层之间的距离越远,这些效应就越弱。麻省理工学院约翰-麦克阿瑟物理学教授沃尔夫冈-凯特尔(Wolfgang Ketterle)说:"我们已经把原子的间距从 500 纳米提高到 50 纳米,可以利用这一点做很多事情。在 50 纳米处,原子的行为有了很大的不同,我们正在进入一个新的领域。"凯特尔和他的同事说,这种新方法可以应用于许多其他原子,以研究量子现象。该研究小组计划利用这种技术将原子操纵成可以产生第一个纯磁性量子门的构型这是新型量子计算机的关键构件。研究小组于5月2日在《科学》杂志上发表了他们的研究成果。该研究的共同作者包括第一作者、物理系研究生杜力,以及皮埃尔-巴拉尔、迈克尔-坎塔拉、朱利叶斯-德-洪德和卢宇坤他们都是麻省理工学院-哈佛超冷原子中心、物理系和电子研究实验室的成员。研究人员调整激光系统的控制电子装置。图片来源:研究人员提供为了操纵和排列原子,物理学家通常首先将原子云冷却到接近绝对零度的温度,然后使用激光束系统将原子集中到一个光学陷阱中。激光是一种具有特定波长(电场最大值之间的距离)和频率的电磁波。波长将光所能形成的最小图案限制在 500 纳米,即所谓的光学分辨率极限。由于原子会被特定频率的激光吸引,因此原子会被定位在激光强度的峰值点上。因此,现有技术对原子粒子的定位距离有限,无法用于探索更短距离内发生的现象。凯特尔解释说:"传统技术止步于 500 纳米,受限的不是原子,而是光的波长。我们现在发现了一种新的光技巧,可以突破这一限制。"该团队的新方法与当前的技术一样,首先冷却原子云在这种情况下,冷却到大约 1 微开尔文,仅比绝对零度高出一线此时,原子接近静止。然后,物理学家可以使用激光将冻结的粒子移动到所需的构型中。然后,杜和他的合作者使用了两束激光,每束激光都有不同的频率(即颜色)和圆偏振(即激光电场的方向)。当这两束激光穿过超冷原子云时,原子会沿着两束激光中任何一束的偏振,向相反的方向自旋。结果,两束激光产生了两组相同的原子,只是自旋方向相反。每束激光都形成了一个驻波,即空间周期为 500 纳米的电场强度周期性模式。由于它们的偏振不同,每个驻波都能根据原子的自旋吸引和俘获两组原子中的一组。激光可以叠加和调整,使其各自峰值之间的距离小到 50 纳米,这意味着被引力吸引到各自激光峰值的原子将被同样的 50 纳米分开。但要做到这一点,激光器必须非常稳定,不受任何外部噪音的影响,例如实验中的震动甚至呼吸声。研究小组意识到,他们可以通过一根光纤来引导这两束激光,从而使它们保持稳定。杜力说:"通过光纤发送两束激光的想法意味着整台机器可能会剧烈晃动,但两束激光彼此保持绝对稳定。"作为对新技术的首次测试,研究小组使用了镝原子一种稀土金属,它是元素周期表中磁性最强的元素之一,尤其是在超低温条件下。然而,在原子尺度上,该元素的磁相互作用在 500 纳米的距离上也相对较弱。就像普通冰箱磁铁一样,原子之间的磁吸引力会随着距离的增加而增加,科学家们怀疑,如果他们的新技术能将镝原子间隔到 50 纳米的距离,就可能观察到磁性原子之间原本微弱的相互作用。坎塔拉说:"我们可能会突然产生磁相互作用,这种作用过去几乎可以忽略不计,但现在却非常强大。"研究小组将他们的技术应用于镝,首先对原子进行过冷处理,然后通过两束激光将原子分成两个自旋组或自旋层。他们发现,两层镝原子确实向各自的激光峰引力,这实际上将原子层分开了 50 纳米这是任何超冷原子实验所能达到的最近距离。在这种极度接近的情况下,原子的自然磁性相互作用得到了显著增强,比相距 500 纳米的原子强 1000 倍。研究小组观察到,这些相互作用产生了两种新的量子现象:集体振荡,即一层的振动导致另一层同步振动;热化,即一层纯粹通过原子的磁波动将热量传递给另一层。杜指出:"到目前为止,只有当原子处于同一物理空间并发生碰撞时,它们之间才能交换热量。现在,我们看到了被真空隔开的原子层,它们通过波动的磁场交换热量。"该团队的研究成果引入了一种新技术,可用于将多种类型的原子靠近放置。他们还表明,原子放置得足够近时,会表现出有趣的量子现象,可以利用这些现象来制造新的量子材料,并有可能制造出用于量子计算机的磁驱动原子系统。坎塔拉说:"我们将超分辨率方法带入了这一领域,它将成为进行量子模拟的通用工具。可能有许多变体,我们正在研究这些变体"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

创新性研究利用悬浮光学机械观察较大物体的量子现象

创新性研究利用悬浮光学机械观察较大物体的量子现象 两个被光学捕获的纳米粒子通过光子在镜子之间来回反弹而耦合在一起,图片显示两个纳米粒子(绿色)被光镊/激光束(红色)困住,并被放置在两面镜子(白色)之间,形成一个光腔(周期性的蓝色圆球)。纳米粒子(紫色斜箭头)散射的光子被困在空腔中,从而导致两个纳米粒子之间的相互作用(紫色直线)。资料来源:曼彻斯特大学量子物理定律支配着微小尺度上的粒子行为,从而产生了量子纠缠等现象,纠缠粒子的特性以经典物理学无法解释的方式密不可分地联系在一起。较大物体中的量子现象量子物理学研究有助于我们填补物理学知识的空白,并能让我们更全面地了解现实,但量子系统运行的微小尺度会使它们难以观测和研究。在过去的一个世纪里,物理学家成功地在越来越大的物体中观测到了量子现象,从电子等亚原子粒子到包含成千上万原子的分子。最近,悬浮光机械学领域涉及在真空中控制高质微米级物体,其目的是通过测试比原子和分子重几个数量级的物体中量子现象的有效性,进一步推动这一领域的发展。然而,随着物体质量和尺寸的增加,产生微妙量子特征(如纠缠)的相互作用会被环境所遗忘,从而导致我们观察到的经典行为。克服环境噪声但现在,曼彻斯特大学量子工程实验室主任 Jayadev Vijayan 博士与苏黎世联邦理工学院的科学家以及因斯布鲁克大学的理论家共同领导的团队,在苏黎世联邦理工学院进行的一项实验中确立了克服这一问题的新方法,并发表在《自然-物理》杂志上。Vijayan博士说:"要在更大尺度上观测量子现象并揭示经典-量子转换,就必须在环境噪声的影响下保留量子特征。可以想象,要做到这一点有两种方法:一是抑制噪声,二是增强量子特征。我们的研究展示了通过第二种方法应对挑战的方法。我们的研究表明,两个光学捕获的 0.1 微米大小的玻璃颗粒之间的纠缠所需的相互作用可以放大几个数量级,以克服环境损失。"科学家们将粒子放在两面高反射镜之间,形成一个光腔。这样,每个粒子散射的光子在离开空腔之前会在镜子之间反弹数千次,从而大大提高了与另一个粒子发生相互作用的几率。苏黎世联邦理工学院的论文共同负责人约翰内斯-皮奥特罗斯基(Johannes Piotrowski)补充说:"值得注意的是,由于光学相互作用是由空腔介导的,其强度不会随距离衰减,这意味着我们可以将微米级粒子耦合到几毫米的范围内。研究人员还展示了通过改变激光频率和粒子在腔体内的位置来精细调整或控制相互作用强度的非凡能力。实际应用和未来方向这些发现是对基础物理学理解的重大飞跃,同时也为实际应用带来了希望,特别是可用于环境监测和离线导航的传感器技术。维也纳技术大学的合作者卡洛斯-冈萨雷斯-巴列斯特罗博士说:"悬浮机械传感器的关键优势在于,与其他使用传感技术的量子系统相比,它们的质量很高。大质量使其非常适合探测引力和加速度,从而提高灵敏度。因此,量子传感器可用于各个领域的许多不同应用,如监测极地冰层用于气候研究,测量加速度用于导航目的等。"皮奥特罗斯基补充说:"能在这个相对较新的平台上工作,并测试我们能在多大程度上将其推入量子体系,这令人兴奋。"现在,研究团队将把新功能与成熟的量子冷却技术相结合,大步迈向量子纠缠的验证。如果成功,实现悬浮纳米粒子和微粒子的纠缠将缩小量子世界与日常经典力学之间的差距。在曼彻斯特大学光子科学研究所和电气与电子工程系,Jayadev Vijayan 博士的团队将继续研究悬浮光学机械学,利用多个纳米粒子之间的相互作用,将其应用于量子传感领域。编译自:ScitechDaily ... PC版: 手机版:

封面图片

加州理工学院发明利用超声激活药物靶向治疗癌症的创新疗法

加州理工学院发明利用超声激活药物靶向治疗癌症的创新疗法 靶向给药方式的突破但现在,加州理工学院的两个研究小组创造出了一种全新的给药系统,他们说,这种系统可能最终让医生有能力以更有针对性的方式治疗癌症。该系统采用的药物通过超声波激活,而且只在体内需要的地方使用。该系统由化学助理教授马克斯韦尔-罗伯(Maxwell Robb)和马克斯-德尔布吕克(Max Delbrück)化学工程与医学工程教授、霍华德-休斯医学研究所研究员米哈伊尔-夏皮罗(Mikhail Shapiro)的实验室开发。在发表于《美国国家科学院院刊》上的一篇论文中,研究人员展示了他们是如何将各自专业的元素结合在一起创造出这一平台的。通过合作,两个研究小组将气泡(某些细菌中充满空气的蛋白质胶囊)和机械分子(在物理力作用下会发生化学变化的分子)结合起来。夏皮罗的实验室以前曾利用气泡和超声波来对单个细胞进行成像,并精确地移动细胞。罗伯的实验室则创造出了在拉伸时会变色的机械分子,使它们能用于检测结构中的应变;还有其他机械分子,能在机械刺激下释放出较小的分子,包括药物。在这项新工作中,他们设计了一种使用超声波作为刺激的方法。在超声波的作用下,气体囊泡会破裂,在破裂的过程中,被称为"机械分子"的分子会破裂,释放出更小的、所需的分子。资料来源:加州理工学院超声激活的机械聚合物"我们考虑这个问题已经很久了,"罗伯说。"我刚到加州理工学院时,米哈伊尔和我就开始讨论超声波的机械效应。"当他们开始研究如何将机械孔和超声波结合起来时,他们发现了一个问题:超声波可以激活机械孔,但其强度过大,也会损伤邻近组织。研究人员需要的是一种能将超声波能量集中到他们想要的地方的方法。结果证明,夏皮罗的气囊技术提供了解决方案。小瓶中的气体囊泡在溶液中呈白色,在超声波作用下破裂后会变得透明。资料来源:加州理工学院在之前的研究中,夏皮罗利用了囊泡在超声波的轰击下会像钟一样振动或"响铃"的特性。然而,在目前的研究中,囊泡被敲得很响,以至于破裂,从而集中了超声波能量。这些囊泡实际上成了微小的炸弹,它们的爆炸激活了机械体。"通过超声波施力通常依赖于非常强烈的条件,这些条件会引发微小溶解气泡的内爆,"该研究的共同作者莫莉-麦克法登(23 岁,博士)说。"它们的内爆是激活机械体的机械力来源。小泡对超声波的敏感度更高。利用它们,我们发现在弱得多的超声波下也能实现同样的机械体激活"。未来的潜力和影响沙皮罗实验室的博士后助理研究员姚宇星说,这是聚焦超声首次能够在生物环境中控制特定的化学反应。姚说:"以前,超声波一直被用来破坏或移动物体。但现在,它为我们开辟了一条使用机械化学的新道路。"到目前为止,该平台仅在受控实验室条件下进行了测试,但研究人员计划今后在生物体内对其进行测试。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

【联邦银行和麻省理工学院DCI加入CBDC隐私研究】

【联邦银行和麻省理工学院DCI加入CBDC隐私研究】 德国联邦银行(Bundesbank)与麻省理工学院数字货币倡议(DCI)合作研究中央银行数字货币(CBDC)的隐私问题。双方致力于解决数字支付客户数据的安全问题,确保用户隐私权得到保护。德意志联邦银行行长约阿希姆·纳格尔强调,在CBDC发展过程中,保护隐私至关重要。该研究旨在制定一种减少用户侵犯隐私机会的方法。合作有助于实现欧元区内部直接转账的高效性。麻省理工学院DCI拥有与多家中央银行合作的丰富经验,包括美联储和英格兰银行,使其成为推进CBDC研究的重要合作伙伴。 快讯/广告 联系 @xingkong888885

封面图片

麻省理工学院研究人员展示快速打印金属的新方法

麻省理工学院研究人员展示快速打印金属的新方法 麻省理工学院的一个团队本周公布了一种新方法,该方法优先考虑打印速度和规模(物体大小),而不是分辨率。据介绍,该系统打印大型铝制部件的速度"比同类金属快速成型制造工艺至少快 10 倍。液态金属打印(LMP)利用 100 微米的玻璃珠形成一个结构,将熔化的铝沉积其中,这一过程与注塑成型并无二致。玻璃珠能够承受高温,同时在金属凝固时迅速散热。鉴于铝被归类为"无限可回收"的材料,这项工作背后的团队设想将这一系统与将金属熔化成熔体的机器配对使用。这样的组合对于建筑工地来说可能是无价之宝,能以更低的成本实现更快的速度和更大的物体。不过,至少有一个很大的注意事项:分辨率。从图片中可以看出,最终产品的精确度远不及其他一些方法。制作出的金属物体凹凸不平,与逐层挤出塑料的熔融沉积建模(FDM)产品十分相似。当然,也可以对铝材进行打磨,但这很可能需要额外的时间和金钱,大多数人都不愿意在加工过程中引入这种工艺。"液态金属印刷在生产定制几何形状金属零件的能力方面确实走在了前列,同时还能保持快速周转,这在其他印刷或成型技术中通常是无法实现的,这项技术绝对有潜力彻底改变目前处理金属印刷和金属成型的方式。"Emeco 公司的 Jaye Buchbinder 说,该公司是一家家具公司,为这项研究提供了资金支持。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人