创新性研究利用悬浮光学机械观察较大物体的量子现象

创新性研究利用悬浮光学机械观察较大物体的量子现象 两个被光学捕获的纳米粒子通过光子在镜子之间来回反弹而耦合在一起,图片显示两个纳米粒子(绿色)被光镊/激光束(红色)困住,并被放置在两面镜子(白色)之间,形成一个光腔(周期性的蓝色圆球)。纳米粒子(紫色斜箭头)散射的光子被困在空腔中,从而导致两个纳米粒子之间的相互作用(紫色直线)。资料来源:曼彻斯特大学量子物理定律支配着微小尺度上的粒子行为,从而产生了量子纠缠等现象,纠缠粒子的特性以经典物理学无法解释的方式密不可分地联系在一起。较大物体中的量子现象量子物理学研究有助于我们填补物理学知识的空白,并能让我们更全面地了解现实,但量子系统运行的微小尺度会使它们难以观测和研究。在过去的一个世纪里,物理学家成功地在越来越大的物体中观测到了量子现象,从电子等亚原子粒子到包含成千上万原子的分子。最近,悬浮光机械学领域涉及在真空中控制高质微米级物体,其目的是通过测试比原子和分子重几个数量级的物体中量子现象的有效性,进一步推动这一领域的发展。然而,随着物体质量和尺寸的增加,产生微妙量子特征(如纠缠)的相互作用会被环境所遗忘,从而导致我们观察到的经典行为。克服环境噪声但现在,曼彻斯特大学量子工程实验室主任 Jayadev Vijayan 博士与苏黎世联邦理工学院的科学家以及因斯布鲁克大学的理论家共同领导的团队,在苏黎世联邦理工学院进行的一项实验中确立了克服这一问题的新方法,并发表在《自然-物理》杂志上。Vijayan博士说:"要在更大尺度上观测量子现象并揭示经典-量子转换,就必须在环境噪声的影响下保留量子特征。可以想象,要做到这一点有两种方法:一是抑制噪声,二是增强量子特征。我们的研究展示了通过第二种方法应对挑战的方法。我们的研究表明,两个光学捕获的 0.1 微米大小的玻璃颗粒之间的纠缠所需的相互作用可以放大几个数量级,以克服环境损失。"科学家们将粒子放在两面高反射镜之间,形成一个光腔。这样,每个粒子散射的光子在离开空腔之前会在镜子之间反弹数千次,从而大大提高了与另一个粒子发生相互作用的几率。苏黎世联邦理工学院的论文共同负责人约翰内斯-皮奥特罗斯基(Johannes Piotrowski)补充说:"值得注意的是,由于光学相互作用是由空腔介导的,其强度不会随距离衰减,这意味着我们可以将微米级粒子耦合到几毫米的范围内。研究人员还展示了通过改变激光频率和粒子在腔体内的位置来精细调整或控制相互作用强度的非凡能力。实际应用和未来方向这些发现是对基础物理学理解的重大飞跃,同时也为实际应用带来了希望,特别是可用于环境监测和离线导航的传感器技术。维也纳技术大学的合作者卡洛斯-冈萨雷斯-巴列斯特罗博士说:"悬浮机械传感器的关键优势在于,与其他使用传感技术的量子系统相比,它们的质量很高。大质量使其非常适合探测引力和加速度,从而提高灵敏度。因此,量子传感器可用于各个领域的许多不同应用,如监测极地冰层用于气候研究,测量加速度用于导航目的等。"皮奥特罗斯基补充说:"能在这个相对较新的平台上工作,并测试我们能在多大程度上将其推入量子体系,这令人兴奋。"现在,研究团队将把新功能与成熟的量子冷却技术相结合,大步迈向量子纠缠的验证。如果成功,实现悬浮纳米粒子和微粒子的纠缠将缩小量子世界与日常经典力学之间的差距。在曼彻斯特大学光子科学研究所和电气与电子工程系,Jayadev Vijayan 博士的团队将继续研究悬浮光学机械学,利用多个纳米粒子之间的相互作用,将其应用于量子传感领域。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

科学家利用固态自旋量子传感器研究了电子自旋之间新的速度相关相互作用

科学家利用固态自旋量子传感器研究了电子自旋之间新的速度相关相互作用 标准模型是粒子物理学中一个非常成功的理论框架,描述了基本粒子和四种基本相互作用。然而,标准模型仍然无法解释当前宇宙学中的一些重要观测事实,例如暗物质和暗能量。一些理论认为,新粒子可以充当传播者,在标准模型粒子之间传递新的相互作用。目前,缺乏关于自旋速度相关新相互作用的实验研究,特别是在相对较小的力距离范围内,几乎不存在实验验证。研究人员设计了一个配备两颗钻石的实验装置。使用化学气相沉积在每颗钻石表面制备了高质量的氮空位 (NV) 集成。一个NV系综中的电子自旋用作自旋传感器,而另一个则充当自旋源。研究人员通过相干地操纵两个金刚石NV系综的自旋量子态和相对速度,在微米尺度上寻找电子速度依赖性自旋之间的新相互作用效应。首先,他们使用自旋传感器来表征磁偶极子与自旋源的相互作用作为参考。然后,通过调制自旋源的振动并执行锁定检测和相位正交分析,他们测量了SSIVD。研究的实验结果。图片来源:DU et al.对于两种新的相互作用,研究人员分别在小于1厘米和小于1公里的力范围内进行了首次实验检测,获得了宝贵的实验数据。正如编辑所说,“这些结果为量子传感界带来了新的见解,以利用固态自旋的紧凑、灵活和敏感特征来探索基本相互作用。该团队由中国科学院中国科学技术大学杜江峰院士和邢荣教授领导,浙江大学焦满教授合作。更多信息:Yue Huang 等人,与固态量子传感器的奇异自旋-自旋-速度相关相互作用的新约束,物理评论快报 (2024)。DOI: 10.1103/PhysRevLett.132.180801 ... PC版: 手机版:

封面图片

研究人员利用电子和空穴自旋实现了精确的量子比特控制和相互作用

研究人员利用电子和空穴自旋实现了精确的量子比特控制和相互作用 巴塞尔大学在量子比特技术方面取得的进展为可扩展量子计算带来了希望,它利用电子和空穴自旋实现了精确的量子比特控制和相互作用。全世界的研究人员都在探索各种量子比特技术,对实用量子计算机的追求正如火如荼地进行着。尽管做出了大量努力,但对于哪种类型的量子比特最能最大限度地发挥量子信息科学的潜力,人们仍未达成共识。量子比特是量子计算机的基础。它们负责处理、传输和存储数据。有效的量子位必须可靠地存储和快速处理信息。这就要求外部系统能够准确控制大量量子比特之间稳定、迅速的相互作用。当今最先进的量子计算机只有几百个量子比特。这就限制了它们执行传统计算机已经能够完成的计算,而且往往能更高效地完成。要想推动量子计算的发展,研究人员必须找到一种在单个芯片上容纳数百万量子比特的方法。电子和空穴为了解决数千个量子比特的排列和连接问题,巴塞尔大学和 NCCR SPIN 的研究人员依靠一种利用电子或空穴自旋(固有角动量)的量子比特。空穴本质上是半导体中缺失的电子。空穴和电子都具有自旋,可采用两种状态之一:向上或向下,类似于经典比特中的 0 和 1。与电子自旋相比,空穴自旋的优势在于它可以完全由电子控制,无需在芯片上安装微型磁铁等额外元件。两个相互作用的空穴自旋量子比特。当一个空穴(洋红色/黄色)从一个位点隧穿到另一个位点时,它的自旋(箭头)会因所谓的自旋轨道耦合而旋转,从而导致周围气泡所描述的各向异性相互作用。资料来源:NCCR SPIN2022 年,巴塞尔物理学家证明,现有电子设备中的空穴自旋可以被捕获并用作量子比特。这些"FinFET"(鳍式场效应晶体管)内置于现代智能手机中,并通过广泛的工业流程生产出来。现在,安德烈亚斯-库尔曼(Andreas Kuhlmann)博士领导的团队首次成功地在这种装置中实现了两个量子比特之间可控的相互作用。量子计算机需要"量子门"来执行计算。量子门"代表着操纵量子比特并将它们相互耦合的操作。研究人员在《自然-物理》杂志上报告说,他们能够将两个量子比特耦合起来,并根据其中一个量子比特的自旋状态,使另一个量子比特的自旋发生受控翻转这就是所谓的受控自旋翻转。"孔自旋使我们能够创建既快速又高保真的双量子比特门。"库尔曼说:"现在,这一原理还使我们有可能将更多的量子位对耦合在一起。"两个自旋量子比特的耦合基于它们之间的交换相互作用,这种相互作用发生在两个静电相互作用的无差别粒子之间。令人惊奇的是,空穴的交换能不仅在电学上是可控的,而且具有很强的各向异性。这是自旋轨道耦合的结果,意味着空穴的自旋状态受其空间运动的影响。为了在模型中描述这一观察结果,巴塞尔大学和 NCCR SPIN 的实验物理学家和理论物理学家联手合作。库尔曼说:"各向异性使得双量子比特门成为可能,而无需在速度和保真度之间进行通常的权衡。基于空穴自旋的量子比特不仅可以利用硅芯片久经考验的制造工艺,还具有高度的可扩展性,并在实验中被证明是快速和稳健的。这项研究强调,这种方法在开发大规模量子计算机的竞赛中大有可为。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

洛桑联邦理工学院(EPFL)研究人员实现在室温下控制量子现象

洛桑联邦理工学院(EPFL)研究人员实现在室温下控制量子现象 操作装置的概念图,由两个周期性分割的镜子夹着一个装有纳米柱的鼓组成,使激光能在室温下与鼓产生强烈的量子力学相互作用。图片来源:EPFL 和第二湾工作室传统上,这种观测只能在接近绝对零度的环境中进行,因为那里的量子效应更容易被探测到。然而,对极冷环境的要求一直是一个主要障碍,限制了量子技术的实际应用。现在,EPFL 的托比亚斯-基彭伯格(Tobias J. Kippenberg)和尼尔斯-约翰-恩格尔森(Nils Johan Engelsen)领导的一项研究重新定义了可能的界限。这项开创性工作融合了量子物理学和机械工程,实现了对室温下量子现象的控制。基彭伯格说:"几十年来,实现室温量子光力学一直是一个公开的挑战。我们的工作有效地实现了海森堡显微镜长期以来一直被认为只是一个理论玩具模型。"在今天(2 月 14 日)发表在《自然》杂志上的实验装置中,研究人员创建了一个超低噪声光机械系统一种光与机械运动相互连接的装置,使他们能够高精度地研究和操纵光如何影响移动物体。晶体状空腔镜,中间是鼓。图片来源:Guanhao Huang/EPFL室温的主要问题是热噪声,它会干扰微妙的量子动力学。为了最大限度地减少热噪声,科学家们使用了空腔镜,这是一种专门的反射镜,能在密闭空间(空腔)内来回反弹光线,有效地"捕获"光线,并增强光线与系统中机械元件的相互作用。为了减少热噪声,这些镜子采用了类似晶体的周期性("声子晶体")结构。另一个关键部件是一个 4 毫米的鼓状装置,称为机械振荡器,它在空腔内与光相互作用。它相对较大的尺寸和设计是将其与环境噪声隔离开来的关键,这使得在室温下探测微妙的量子现象成为可能。恩格尔森说:"我们在这项实验中使用的鼓是多年努力的结晶,目的是制造出与环境隔离良好的机械振荡器。""我们用来处理难缠的复杂噪声源的技术,对更广泛的精密传感和测量领域具有重要意义和影响,"领导该项目的两名博士生之一黄冠豪说。这种量子现象是指通过操纵光的某些特性,如强度或相位,来减少一个变量的波动,而以增加另一个变量的波动为代价,正如海森堡原理所规定的那样。通过在他们的系统中演示室温下的光学挤压,研究人员表明,他们可以有效地控制和观察宏观系统中的量子现象,而无需极低的温度。研究小组认为,该系统在室温下运行的能力将扩大量子光机械系统的使用范围,而量子光机械系统是量子测量和量子力学在宏观尺度上的既定试验平台。领导这项研究的另一名博士生阿尔贝托-贝卡里(Alberto Beccari)补充说:"我们开发的系统可能会促进新的混合量子系统,在这种系统中,机械鼓与不同的物体(如被困的原子云)发生强烈的相互作用。这些系统对量子信息非常有用,有助于我们了解如何创建大型复杂量子态。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员结合诺贝尔奖获奖理念 提高量子通信的效率和安全性

研究人员结合诺贝尔奖获奖理念 提高量子通信的效率和安全性 纠缠光子是一种即使相隔很远也能保持连接的光粒子,2022 年诺贝尔物理学奖对这方面的实验给予了肯定。IQC研究团队将纠缠与量子点(一种获得2023年诺贝尔化学奖的技术)相结合,旨在优化创建纠缠光子的过程,纠缠光子具有广泛的应用,包括安全通信。提高量子效率和纠缠度IQC和滑铁卢电气与计算机工程系教授Michael Reimer博士说:"量子密钥分发或量子中继器等令人兴奋的应用需要高度纠缠和高效率的结合,这些应用被设想用于将安全量子通信的距离扩展到全球范围或连接远程量子计算机。以前的实验只能测量到近乎完美的纠缠或高效率,但我们是第一个用量子点同时达到这两个要求的人。"纠缠光子源嵌入半导体纳米线的铟基量子点(左),以及如何从纳米线中有效提取纠缠光子的可视化图。资料来源:滑铁卢大学通过将半导体量子点嵌入纳米线,研究人员创造出了一种能产生近乎完美的纠缠光子的光源,其效率是以前工作的65倍。这种新光源是与位于渥太华的加拿大国家研究理事会合作开发的,可以用激光激发,根据指令产生纠缠对。研究人员随后使用荷兰 Single Quantum 公司提供的高分辨率单光子探测器来提高纠缠程度。历史上,量子点系统一直存在一个名为"精细结构分裂"的问题,它会导致纠缠态随时间发生振荡。这意味着使用慢速检测系统进行测量将无法测量纠缠状态,IQC 和滑铁卢电气与计算机工程系博士生 Matteo Pennacchietti 说。"我们将量子点与非常快速和精确的检测系统相结合,克服了这一难题。我们基本上可以在振荡过程中的每一点上获取纠缠态的时间戳,这就是我们拥有完美纠缠的地方。"为了展示未来的通信应用,Reimer 和 Pennacchietti 与 Norbert Lütkenhaus 博士和 Thomas Jennewein 博士(两人均为 IQC 教师和滑铁卢物理与天文学系教授)及其团队合作。利用新的量子点纠缠源,研究人员模拟了一种称为量子密钥分发的安全通信方法,证明量子点源在未来的安全量子通信中大有可为。编译自:ScitechDaily ... PC版: 手机版:

封面图片

超快定时激光脉冲揭示更多量子材料的独特性能

超快定时激光脉冲揭示更多量子材料的独特性能 光诱导的双极子对极子形成扭曲了准一维原子晶格,在伪间隙的形成过程中发挥了重要作用。资料来源:Steven Burrows/Murnane 和 Kapteyn 小组当电子和声子强烈相互作用时,它们的行为就像"准"粒子,而不是单一的孤立粒子。这些相互作用以极短的时间尺度发生:电子之间的相互作用以飞秒(10-15秒)甚至更快的速度发生,而声子的反应则更慢,在数百飞秒内发生,因为较重的原子比电子移动得更慢。为了研究这些相互作用,科学家通常会改变材料的温度、压力或化学成分,并测量其电学特性,以了解这些相互作用。然而,承载不同相互作用的材料可能会表现出非常相似的特性,这就给精确定位这些相互作用的确切性质带来了挑战。为了克服这个问题,JILA 研究生张颖超与 JILA 研究员 Henry Kapteyn 和 Margaret Murnane 以及科罗拉多大学博尔德分校物理学教授 Rahul Nandkishore 合作,利用一种强大的新方法精确识别量子材料中的声子相互作用,研究成果发表在《纳米快报》(Nano Letters)杂志上。他们利用超精确、定时的激光脉冲和极紫外线脉冲,测量了响应时间,并精确地看到了电子和声子是如何相互作用的。这种方法为更好地控制和操纵量子材料铺平了道路。在这项新研究中,研究人员比较了两种不同材料((TaSe4)2I 和 Rb0.3MoO3,又称铷蓝青铜)中的电子在受到光的轻微扰动后的反应。这些材料之所以是一维(1D)材料,是因为如相应的图所示,它们沿一个方向具有强键,而在垂直方向上的键较弱。这就迫使电子和声子之间发生强烈的相互作用,使这些材料的特性非常依赖于量子现象。从历史上看,这两种材料都被认为有一个由电子和声子之间的耦合产生的小的绝缘间隙,称为极子。在试图理解极子内部的量子相互作用时,这种绝缘间隙会造成问题,因为要激发材料内部的任何相互作用变得十分困难。然而,与这项实验工作同时进行的斯坦福大学的一项最新研究表明,某些材料中的绝缘间隙可能是由极子相互作用产生双极子(或极子对)而产生的。由于小型双极子与玻色子(一种基本粒子)具有相似的性质,一些专家推测,双极子可能会产生一种玻色-爱因斯坦冷凝物(BEC),这可能是材料超导的一种机制。JILA和科罗拉多大学博尔德分校的研究人员指出,他们的实验可以在这种双极子情况下自然地得到解释,表明(TaSe4)2I材料是一种双极子绝缘体。Nandkishore解释说:"这是一个很好的例子,说明理论与实验的结合可以带来新的见解。"超越材料松弛时间为此,研究小组使用超快激光脉冲温和地激发两种材料中的若干电子。然后,使用波长比可见光短十倍的超快极紫外脉冲来准确观察电子被激发的能量和位置。通过跟踪激发电子的能量和位置,研究人员可以看到 (TaSe4)2I 中双极子熔化成单极子的特征。除了了解是什么相互作用导致了绝缘间隙,研究人员还观察到两种材料的弛豫时间不同。弛豫时间,即材料从应力、热或光中恢复所需的时间,根据材料内部的量子相互作用而变化。在 (TaSe4)2I中,晶格中的原子需要重新排列,因为双极子会熔化成单极子。这个过程大约需要 250 飞秒,然后在 1500 飞秒内缓慢弛豫到双极子基态,如相应的图所示。Nandkishore 补充说:"观察激发电子的位置并测量其弛豫时间的能力,为了解这些材料中的微观相互作用提供了新的视角,而传统的实验技术是无法做到这一点的。"相比之下,Rb0.3MoO3 中的电子对光的反应和弛豫时间要快十倍(约 60 飞秒),这清楚地表明,电子之间的相互作用一定是这种一维材料产生绝缘间隙的原因。这种更快的弛豫时间似乎与一种不同的物理学理论(即卢廷格-液体理论)相吻合。在鲁丁格液体中,电子的运动更像是音乐会上的人群,而不是单个的电子。它们彼此强烈互动,形成一种集体行为。这种集体行为使液体像绝缘体一样,拒绝传导电流。这种由 JILA 和科罗拉多大学博尔德分校研究人员展示的新方法还可用于揭示其他材料(如超导体和二维材料)中量子准粒子相互作用的性质。"我们很高兴能够精确探测材料中电子、声子和自旋之间在基本时间尺度上的相互作用,从而揭示这些材料具有其特性的原因,并学习如何操纵它们,"Murnane 说。编译自:ScitechDaily ... PC版: 手机版:

封面图片

开创性实验测量地球自转对量子纠缠的影响

开创性实验测量地球自转对量子纠缠的影响 萨格纳克干涉仪2公里长的光纤缠绕在边长1.4米的方形铝制框架上。 图片来源:奥地利维也纳大学光学萨格纳克干涉仪在测量旋转时已经非常灵敏,但是基于量子纠缠的干涉仪具有进一步提高这种灵敏度的潜力。量子纠缠是一种现象,其中两个或多个粒子共享一种状态,即使它们被远距离分开,其中一个粒子的测量也会影响另一个粒子的状态。研究团队建造了一个巨大的光学萨格纳克干涉仪,并在数小时内将噪声保持在低而稳定的水平。这使得他们能够检测到足够高质量的纠缠光子对,相比以前的光学萨格纳克干涉仪,旋转精度提高了1000倍。在一项实验室实验中,科学家们将纠缠光子(红色方块)送入一个干涉仪(如图),该干涉仪的灵敏度足以测量地球的自转。马尔科-迪维塔在实际实验中,两个纠缠光子在巨大线圈上缠绕的2公里长的光纤内传播,实现了一个有效面积超过700平方米的干涉仪。针对地球自转,研究人员还设计了一个巧妙的方案:将光纤分成两个等长的线圈,并通过一个光学开关将它们连接起来。通过打开和关闭开关,可有效地根据需要取消旋转信号,并延长大型设备的稳定性。这种方式就像“欺骗”光,让它认为处于一个非旋转的宇宙中。利用这项实验,研究人员观察到了地球自转对最大纠缠双光子态的影响。这证实了爱因斯坦狭义相对论和量子力学中描述的旋转参考系和量子纠缠之间的相互作用。研究人员表示,该研究结果和方法将为进一步提高基于量子纠缠的传感器旋转灵敏度奠定基础,可能会为未来通过时空曲线测试量子纠缠行为的实验开辟道路。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人