新型超快激光技术可改善肿瘤放射治疗效果

新型超快激光技术可改善肿瘤放射治疗效果 这项应用是国家科学研究院(INRS)先进激光光源实验室(ALLS)的研究团队在能源材料电信研究中心(EMT Centre)主任弗朗索瓦-莱加雷(François Légaré)教授指导下开展的最新工作中发现的。同时也是与麦吉尔大学健康中心(MUHC)的医学物理学家合作的成果。该团队的研究成果发表在《激光与光子学评论》(Laser & Photonics Reviews)杂志上,其惊人的结果使人们对高功率激光脉冲的某些知识产生了质疑,而这些知识已成为科学界的共识。国家科学研究中心 EMT 中心主任弗朗索瓦-莱加雷(François Légaré)说:"我们首次证明,在特定条件下,激光束在环境空气中紧密聚焦,可以加速电子,使其能量达到 MeV(兆电子伏特)范围,与用于癌症放射治疗的某些辐照装置的能量数量级相同。"从左至右Steve MacLean(无限潜能实验室首席技术官)、Sylvain Fourmaux(法国国家科研中心助理研究员)、François Fillion-Gourdeau(无限潜能实验室助理研究员)、Stéphane Payeur(法国国家科研中心研究员)、Simon Vallières(法国国家科研中心博士后研究员)和 François Légaré(EMT 中心主任)。资料来源:国家科研所在环境空气中聚焦足够高强度的激光脉冲会在焦点处产生等离子体,这一点已经得到证实。该等离子体是电子源,最多可将电子加速到几千电子伏(keV)的能量。直到最近,由于物理限制,在环境空气中还无法达到更高的能量。研究小组能够证明,在环境空气中加速的电子能够达到 MeV(兆电子伏特)范围内的能量,或者说比以前无法逾越的极限高出约 1000 倍。更好的癌症治疗方法国家科学研究中心 EMT 中心团队的突破为医学物理学的重大进展打开了大门。一个典型的例子就是FLASH放射疗法,这是一种治疗对传统放射疗法有抵抗力的肿瘤的新方法。这种技术可以在极短的时间内(微秒而不是几分钟)提供高剂量的放射线。这可以更好地保护肿瘤周围的健康组织。这种"闪光"效应在研究中还不太清楚,但似乎涉及健康组织的快速脱氧,降低了它们对辐射的敏感性。实验装置。超短红外激光脉冲在环境空气中紧密聚焦,产生高剂量的电离辐射。资料来源:Simon Vallières(法国国家科学研究中心)"没有任何研究能够解释 FLASH 效应的本质。不过,FLASH 放射疗法中使用的电子源与我们在环境空气中强烈聚焦激光产生的电子源具有相似的特性。"博士后研究员、该研究第一作者西蒙-瓦利埃尔(Simon Vallières)说:"一旦辐射源得到更好的控制,进一步的研究将使我们能够探究FLASH效应的原因,并最终为癌症患者提供更好的放射治疗。"更安全的处理这一发现具有具体的意义。首先,在处理环境空气中紧密聚焦的激光束时需要格外小心。"观测到的电子能量(兆电子伏)使它们能够在空气中飞行三米多远,或在皮肤下飞行几毫米。"Simon Vallières解释说:"这给激光源的使用者带来了辐射风险。"此外,通过在放射源附近进行测量,研究小组观察到电子辐射剂量率很高,是传统放射治疗所用剂量率的三到四倍。西蒙-瓦利埃尔说:"发现这种辐射危害是在实验室实施更安全操作的一个机会。这位年轻的研究人员指出,在环境空气中处理高度集中的激光束必须小心谨慎,科学家们需要避免接触高剂量的辐射,因为它们对人体健康有害。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

澳大成功开发一款新型金属多酚网络 能提升肿瘤治疗效果

澳大成功开发一款新型金属多酚网络 能提升肿瘤治疗效果 #澳门大学 澳门大学健康科学学院助理教授代云路的研究团队成功开发一种新型金属多酚网络,能有助提升肿瘤放射治疗疗效。团队使用化学合成的多酚衍生物与多种金属离子配位,构建一种新型金属多酚网络DSPM,能激活肿瘤微环境STING通路,助力肿瘤放射治疗。相关研究成果已在国际著名学术期刊《先进材料》(Advanced Materials)上刊登。 近年来,免疫疗法的兴起改变了癌症治疗的模式...

封面图片

澳大研发新型纳米酶技术可提高免疫治疗效果

澳大研发新型纳米酶技术可提高免疫治疗效果 #澳门大学 澳门大学健康科学学院副教授赵琦带领的研究团队成功研发出一种新型纳米酶技术,利用重塑肿瘤的微环境来增强嵌合抗原受体(CAR) T细胞的抗肿瘤效果,从而提高病人自身免疫系统抗肿瘤的能力。该研究成果为CAR T细胞治疗实体肿瘤的一个重大突破性的进展,并已获权威学术期刊《Small》刊登。 研究显示,CAR T细胞的过继细胞疗法是一种创新的癌症治疗疗法...

封面图片

实验室培育的模型肿瘤可预测特定药物的治疗效果

实验室培育的模型肿瘤可预测特定药物的治疗效果 由人类肠癌细胞形成的类器官三维结构。蓝色表示单个细胞的细胞核,绿色表示将每个细胞粘在一起的蛋白质,红色表示癌细胞的方向  。研究人员在实验室中培育肿瘤,以便在肠癌患者开始治疗前准确预测哪些药物对他们有效。WEHI领导的这项世界首创研究发现,在肿瘤器官组织(由患者自身组织培养而成的三维癌症模型)上进行药物测试,可以显示它们对特定癌症治疗的反应。目前正在根据研究结果开展一项临床试验,该试验将首次验证类器官药物测试是指导肠癌患者选择治疗方法的准确方法,肠癌是澳大利亚致死率第二高的癌症。WEHI领导的研究证明,类器官药物测试可以预测晚期肠癌患者对治疗的反应,准确率高达90%。这项研究是世界上首次使用源自患者的肿瘤器官组织来预先测试现有治疗方案的有效性,并为肠癌患者确定潜在的新疗法。根据这项研究成果开展的临床试验将于今年启动,以评估类器官药物测试能否彻底改变癌症患者的治疗方式。肠癌,又称结肠直肠癌,仍然是全球癌症相关死亡的第二大原因。在澳大利亚,肠癌也是第四大确诊癌症。虽然肠癌如果发现得早可以得到成功治疗,但由于缺乏症状,只有不到一半的患者在初期阶段得到诊断。这意味着患者往往在癌症扩散到身体其他部位后才被诊断出来。尽管治疗肠癌的方法越来越多,但目前预测哪种疗法对每位患者最有效的能力却很有限。肿瘤类器官是一种微型三维癌症模型,尺寸只有沙粒大小。肿瘤器官组织是在实验室中根据患者自身的组织样本培育而成的,它能模拟癌症的特征,包括对药物治疗的敏感性。在发表于《细胞报告医学》(Cell Reports Medicine)的一项具有里程碑意义的研究中,WEHI 的研究人员表明,通过评估肠癌患者的器官组织对特定药物的反应,该技术可以确定对个别肠癌患者最有效的治疗方法。共同首席研究员、肿瘤内科医生彼得-吉布斯教授说,这一发现可以结束目前为患者选择癌症治疗方法的试验和错误过程,并改善他们的生活质量。"吉布斯教授同时也是 WEHI 实验室的负责人,他说:"每次给病人提供无效的治疗,都会让病人损失 2-3 个月的时间。成功治疗的窗口往往是有限的,因此我们必须选择成功几率最高的方案,避免其他不太可能奏效的治疗方法。我们的研究结果表明,类器官药物测试有可能改变癌症治疗的游戏规则,通过改进治疗选择,有可能彻底改变个性化医疗和临床医生与患者之间的护理"。由于可以从一个患者组织样本中培育出数百个器官组织,因此可以在实验室中测试各种不同的治疗方案。"许多晚期肠癌患者只有一到两次治疗机会。在开始治疗前了解什么方法最有可能奏效,将对他们的生存结果和生活质量产生重大影响,"吉布斯教授说。左起:彼得-吉布斯教授、奥利弗-西伯副教授和谭涛博士。作为研究的一部分,30 名肠癌晚期患者的器官组织被用于在临床可行性试验中对化疗药物进行预试验。该研究的通讯作者、WEHI 实验室主任奥利弗-希伯(Oliver Sieber)副教授说,看到这项研究取得令人鼓舞的成果,对团队来说是一个突破性的时刻,验证了团队五年多来的研究成果。"西伯副教授说:"如果一种药物对肿瘤类器官没有作用,那么这种治疗对病人也没有作用,反之亦然。我们的研究表明,类器官药物检测能够预测研究患者的治疗反应,准确率高达 83%。重要的是,预先测试显示出无效疗法的准确率超过 90%"。研究人员还利用有机体来测试不常用于肠癌患者的化疗药物的有效性。他们发现两名患者的器官组织对一种常用于治疗乳腺癌和膀胱癌的药物很敏感。"我们不仅首次证明了类器官药物试验可以预测患者对肠癌治疗的反应,而且还在试验中为患者找到了新的治疗方案。这就是这项令人难以置信的技术的力量"。一名研究人员手持装有实验室培育的器官组织的托盘,器官组织只有沙粒大小。合作试验这项研究的第一作者陶坦(Tao Tan)博士正在将研究成果转化为临床试验,今年将在维多利亚州的多家医院展开。这项研究将由澳大利亚癌症协会和斯塔福德-福克斯医学研究基金会(Stafford Fox Medical Research Foundation)资助,研究人员希望招募最近被诊断出患有肠癌的患者,以评估他们的肿瘤器官组织能否准确预测个人对治疗的反应。这项题为"基于患者衍生肿瘤类器官的转移性结直肠癌标准疗法预测性测试统一框架"的研究发表在《细胞报告医学》(Cell Reports Medicine)上。这项研究得到了澳大利亚胃肠道试验小组(AGITG)、斯塔福德-福克斯医学研究基金会、澳大利亚癌症协会、北京基因组研究所、维多利亚州癌症理事会维多利亚州癌症生物库和维多利亚州政府的支持。 ... PC版: 手机版:

封面图片

澳大成功研发细菌仿生纳米药可提升肿瘤治疗效果

澳大成功研发细菌仿生纳米药可提升肿瘤治疗效果 #澳门大学 澳门大学中华医药研究院副教授王瑞兵的研究团队开发了大肠杆菌外膜囊泡包被的超分子纳米粒前体作为细菌仿生纳米药物,可靶向治疗实体瘤。该研究成果已刊登于国际顶级综合性学术期刊《科学进展》(Science Advances)。 近年来,因为其高度生物相容性,长循环和特定组织的富集作用,活细胞作为药物载体受到越来越多的关注。由于细胞载体制剂的体外制备涉及复杂耗时的内源性细胞的提取和分选...

封面图片

欧洲核子研究中心(CERN)的粒子加速器技术被用于治疗脑肿瘤

欧洲核子研究中心(CERN)的粒子加速器技术被用于治疗脑肿瘤 Timepix3 最初是为欧洲核子研究中心等巨型加速器的粒子探测而设计的摧毁头颈部肿瘤相对简单。用适当的化学药剂或足够强大的放射线对其进行照射,工作就完成了。问题在于如何在不杀死病人的情况下杀死癌细胞。治疗此类肿瘤的一种有效方法是使用离子束。将带电粒子加速到四分之三光速的离子束可以穿透活体组织达一英尺。为了保护健康细胞,传统技术是以肿瘤为中心,以曲线方式移动离子投射器。这样,肿瘤不断受到轰击,而健康组织只受到轻微照射。为病人准备离子束疗法 欧洲核子研究中心这是一种简单有效的方法,但远非完美,尤其是当肿瘤位于大脑中时。在这种情况下,由于离子束击中组织,邻近的健康细胞很有可能受到二次辐射,从而导致记忆力减退、视神经受损和其他问题。为了尽量减少这种情况,X 射线计算机断层扫描(CT)可以精确绘制肿瘤位置图,指导外科医生制定治疗方案。遗憾的是,手术前进行的扫描可能并不准确,因为手术后大脑在头骨中发生了移动。为了弥补这一缺陷,德国国家肿瘤疾病中心(NCT)、德国癌症研究中心(DKFZ)和海德堡大学医院海德堡离子束治疗中心(HIT)的研究人员使用了捷克公司 ADVACAM 制造的新型成像设备,该设备集成了欧洲核子研究中心开发的 Timepix3 像素探测器。Timepix3 芯片 欧洲核子研究中心Timepix3 设计用于半导体探测器和充气探测器,是一种通用集成电路,可以接收稀疏的探测数据,并在短时间内提供高分辨率输出。这样,ADVACAM 就可以利用离子束的二次辐射,将辐射作为跟踪信标来更新组织图。ADVACAM公司的Lukáš Marek说:"我们的照相机可以记录患者身体发出的每一个带电粒子的二次辐射。这就像观察台球击球时散落的球。如果根据 CT 图像,球的反弹符合预期,我们就可以确定目标正确。否则,'地图'显然不再适用。那么就有必要重新规划治疗"。研究人员的想法是,这些更新将更好地瞄准肿瘤,同时减少患者受到的不必要辐射量,用更高水平的辐射照射肿瘤。目前,探测器需要中断治疗,以便重新规划。不过,该计划的后期阶段将包括实时修正光束路径的功能。"当我们开始为大型强子对撞机开发像素探测器时,我们的目标只有一个探测和成像每一次粒子相互作用,从而帮助物理学家揭开高能量下自然界的秘密,"Medipix 协作组织发言人迈克尔-坎贝尔(Michael Campbell)说。"Timepix探测器是由多学科Medipix合作组织开发的,其目的是将同样的技术应用到新的领域。其中许多领域在一开始是完全无法预见的,这项应用就是一个很好的例子"。 ... PC版: 手机版:

封面图片

南非研究员使用放射性技术遏制犀牛偷猎

南非研究员使用放射性技术遏制犀牛偷猎 南非研究人员向 20 头犀牛角注入放射性物质,此举旨在通过边境现有的辐射探测器,发现和拦截走私的犀牛角,希望最终能遏制犀牛偷猎。在兽医和核专家的帮助下,研究人员首先给犀牛注射麻醉剂,给犀牛角钻孔,植入放射性同位素。根据国际自然保护联盟的数据,20 世纪初全球犀牛数量约为 50 万头。由于黑市对犀牛角的持续需求,全球犀牛数量减少到 27,000 头。南非的犀牛群规模最大,估计有 16,000 头,每年有逾 500 头犀牛被杀。研究人员还考虑对大象和穿山甲等经常被偷猎的野生动物采取类似的放射性注入措施。 via Solidot

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人