高分辨率显微镜和超快激光可精确识别半导体中的缺陷

高分辨率显微镜和超快激光可精确识别半导体中的缺陷 密歇根州立大学将红色波浪箭头所示的太赫兹激光光束与扫描隧道显微镜(STM)的尖端结合在一起深色的金字塔形状与蓝色表面所示的样品交换红色电子。资料来源:Eve Ammerman要把更智能、更强大的电子器件塞进日益缩小的设备中,所面临的挑战之一就是开发工具和技术,对组成这些器件的材料进行日益精确的分析。密歇根州立大学的物理学家在这方面迈出了期待已久的一步,他们采用了一种将高分辨率显微镜与超快激光器相结合的方法。《自然-光子学》(Nature Photonics)杂志介绍了这项技术,它使研究人员能够以无与伦比的精度发现半导体中的错位原子。半导体物理学将这些原子称为"缺陷",这听起来有些负面,但它们通常是有意添加到材料中的,对当今和未来设备中半导体的性能至关重要。这项研究的负责人、杰里-考文实验物理学讲座教授泰勒-科克(Tyler Cocker)说:"这对于具有纳米级结构的组件尤其重要。"密歇根州立大学杰里-考恩实验物理学捐赠讲座教授泰勒-考克(左)与博士生斯蒂芬妮-亚当斯(Stefanie Adams)和穆罕默德-哈桑(Mohamed Hassan)在超快太赫兹纳米镜实验室。图片来源:Matt Davenport/密歇根州立大学自然科学学院这包括计算机芯片等,它们通常使用具有纳米级特征的半导体。研究人员正致力于将纳米级结构发挥到极致,设计出只有一个原子厚度的材料。科克说:"这些纳米材料是半导体的未来,当拥有纳米级电子器件时,确保电子能以你想要的方式运动真的很重要"。他还领导着 MSU 物理与天文学系的超快太赫兹纳米光学实验室。缺陷在电子运动中扮演着重要角色,这就是为什么像科克这样的科学家热衷于准确了解缺陷的位置及其行为方式。当科克的同行们得知他的团队的新技术可以让他们轻松获得这些信息时,都感到非常兴奋。维德兰-耶利奇(Vedran Jelic)作为科克研究小组的博士后研究员率先开展了这一项目,他目前在加拿大国家研究理事会工作,是新报告的第一作者。研究小组成员还包括博士生 Stefanie Adams、Eve Ammerman 和 Mohamed Hassan,以及本科生研究员 Kaedon Cleland-Host。科克补充说,只要有合适的设备,这种技术就可以直接实施,他的团队已经将其应用于石墨烯纳米带等原子级薄材料。科克说:"我们有许多开放项目,在这些项目中,我们用更多的材料和更奇特的材料来使用这种技术。我们把它融入到我们所做的一切工作中,并将其作为一种标准技术来使用"。博士生穆罕默德-哈桑(Mohamed Hassan)和斯蒂芬妮-亚当斯(Stefanie Adams)检查光学台,以调整密歇根州立大学团队新技术中使用的激光。图片来源:Matt Davenport/密歇根州立大学自然科学学院目前已经有一些工具,特别是扫描隧道显微镜(STM),可以帮助科学家发现单原子缺陷。与许多人在高中科学课上认识的显微镜不同,STM 不使用透镜和灯泡来放大物体。相反,STM 使用原子般锋利的尖端扫描样品表面,就像唱片机上的触针一样。但 STM 的针尖并不接触样品表面,它只是足够靠近,以便电子在针尖和样品之间跃迁或隧穿。STM 记录了电子跃迁的数量、跃迁的位置以及其他信息,从而提供有关样品的原子尺度信息(因此,科克的实验室将其称为纳米镜,而不是显微镜)。但是,仅凭 STM 数据并不总能清楚地分辨出样品中的缺陷,尤其是砷化镓,这是一种重要的半导体材料,可用于雷达系统、高效太阳能电池和现代电信设备。在最新发表的论文中,Cocker 和他的团队重点研究了有意注入硅缺陷原子的砷化镓样品,以调整电子在半导体中的移动方式。"对于电子来说,硅原子就像一个深坑,"科克说。尽管理论家们对这类缺陷的研究已有数十年之久,但实验学家们直到现在才能够直接探测到这些单原子。科克和他的团队的新技术仍然使用 STM,但研究人员还将激光脉冲直接照射到 STM 的尖端。这些脉冲由太赫兹频率的光波组成,即每秒上下抖动一万亿次。最近,理论家们证明,这与硅原子缺陷在砷化镓样品中来回抖动的频率相同。通过将 STM 和太赫兹光耦合在一起,MSU 团队创造出了一种探针,它对缺陷具有无与伦比的灵敏度。当 STM 针尖接触到砷化镓表面的硅缺陷时,研究小组的测量数据中突然出现了一个强烈的信号。当研究人员将针尖从缺陷处移开一个原子时,信号消失了。科克说:"这就是人们四十多年来一直在寻找的缺陷,我们可以看到它像钟一样敲响。"他继续说:"起初,我们很难相信,因为它太独特了。我们不得不对它进行全方位的测量,以确定它是真实存在的。"然而,他们确信信号是真的以后,就很容易解释了,这要归功于多年来对这一主题的理论研究。尽管科克的实验室处于这一领域的最前沿,但目前世界各地都有研究小组将 STM 与太赫兹光结合起来。除检测缺陷外,还有许多其他材料也可以从这项技术的应用中获益。现在,他的团队已经与社区分享了自己的方法,科克很高兴看到还有其他发现在等待着他。编译自/ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

一种基于无透镜成像的新方法可以实现近乎完美的高分辨率显微镜观察

一种基于无透镜成像的新方法可以实现近乎完美的高分辨率显微镜观察 圆环状光束从具有规则重复结构的物体上反弹产生的散射图案。资料来源:Wang 等人,2023 年,"Optica"(光学)。功能最强大的无透镜成像技术被称为"层析成像",其工作原理是用类似激光的光束扫描样品,收集散射光,然后利用计算机算法重建样品图像。虽然层析成像技术可以观察到许多纳米结构,但这种特殊的显微镜在分析具有非常规则的重复图案的样品时会遇到困难。这是因为在扫描周期性样品时,散射光不会发生变化,因此计算机算法会感到困惑,无法重建良好的图像。面对这一挑战,刚刚毕业的博士研究员王斌和内森-布鲁克斯与 JILA 研究员 Margaret Murnane 和 Henry Kapteyn 合作,开发出一种新方法,利用具有特殊涡旋或甜甜圈形状的短波长光来扫描这些重复表面,从而产生更多不同的衍射图样。这使得研究人员能够利用这种新方法捕捉到高保真的图像重建,他们最近在《光学》(Optica)杂志上发表了这篇论文。这项成果还将在《Optica》杂志的《光学与光子学新闻》(Opticsand Photonics News)2023 年光学 年度要闻中重点介绍。这种新的成像方法对于纳米电子学、光子学和超材料的应用尤其具有影响力。Murnane 解释说:"将可见激光束结构化(或改变其形状)为甜甜圈和其他形状的能力彻底改变了可见光超分辨率显微镜技术。现在,我们有了将这些强大功能应用到更短波长的途径,这非常令人兴奋"。雕刻涡形高次谐波束为了在台式装置中产生类似激光的短波长光束,JILA 小组使用了一种称为高次谐波发生(HHG)的过程。当超高速激光脉冲击中一个原子时,高次谐波发生器会将一个电子拉走,然后将其驱回母体原子重新结合。原子在接触时,会将电子的动能转化为极紫外(EUV)光。如果数以百万计的原子都同步发出极紫外光,那么这些光波就会产生类似激光的明亮极紫外光束。为了给重复图案成像,JILA 的研究人员需要找到一种改变 HHG 光束的方法,这样当 EUV 光束在样品上扫描时,散射光就会发生变化。为了达到这一效果,研究人员将 HHG 光束从圆盘状转变为涡旋状或甜甜圈状,这就是所谓的轨道角动量(OAM)光束。这种不同的形状对于实现周期性样品的无透镜成像至关重要。当科学家们用漩涡状的 HHG 光束照射显微镜时(见附图),会产生更复杂的散射图案,这些图案会随着样品的扫描而变化。这些变化编码了样品重复图案的信息,使算法能够提取精确的图像。除了这一令人兴奋的结果之外,与扫描电子显微镜相比,这种新型涡流束无透镜成像技术对脆弱样品的损伤也更小。由于许多软性材料、塑料和生物样本都很脆弱,因此有一种精确而温和的方法来对它们进行成像是非常关键的。此外,涡流束无透镜成像比扫描电子显微镜更能检测出纳米图案中的缺陷,因为扫描电子显微镜往往会融化脆弱的样品。对于为下一代纳米、能源、光子和量子设备制造图案化材料的科学家来说,这一进步能够在不破坏高周期结构的情况下对其进行高分辨率成像。正如 Kapteyn 所说:"未来,这也有可能以高空间分辨率对微妙的活细胞进行成像"。编译自:ScitechDaily ... PC版: 手机版:

封面图片

科学家发明新型半导体激发技术

科学家发明新型半导体激发技术 横滨国立大学的科学家和加州理工学院的同事利用高强度、宽频带的超快太赫兹脉冲,在一种二维半导体材料中实现了原子激发,推动了电子设备的发展。他们的论文于 3 月 19 日发表在《应用物理通讯》(Applied Physics Letters)杂志上,并作为编辑推荐文章。二维(2D)材料或片状纳米材料因其独特的电子特性而成为未来半导体应用的理想平台。过渡金属二掺杂物(TMDs)是二维材料中的一个重要类别,由夹在掺杂物原子层之间的过渡金属原子层组成。这些原子以晶格结构排列,可以围绕其平衡位置振动或振荡这种集体激发被称为相干声子,在决定和控制材料特性方面起着至关重要的作用。声波诱导技术的创新传统上,相干声子由可见光和近红外区域的超短脉冲激光器诱导。使用其他光源的方法仍然有限。横滨国立大学工程科学研究生院助理教授、该研究的第一作者 Satoshi Kusaba 说:"我们的研究解决了超快太赫兹频率激光器(或低能光子)如何在 TMD 材料中诱导相干声子这一基本问题。"WSe2 中声子的超快宽带太赫兹激发和偏振旋转探测示意图。获得的结果(右下)包括通过和频过程激发的相干声子振荡信号(右上)。资料来源:Satoshi Kusaba / 横滨国立大学太赫兹辐射是指频率在太赫兹范围内的电磁波,介于微波和红外频率之间。研究小组制备了超快宽带太赫兹脉冲,以诱导一种名为WSe2 的 TMD 薄膜中的相干声子动力学。为检测光学各向异性(换句话说,即光在穿过材料时的表现),研究人员安排了一套精确而灵敏的装置。研究人员研究了超短激光脉冲与材料相互作用时电场方向的变化;这些变化被称为偏振旋转。通过仔细观察微小的诱导光学各向异性,研究小组成功地探测到了太赫兹脉冲诱导的声子信号。"我们的研究最重要的发现是,太赫兹激发可以通过一个独特的和频激发过程在TMD中诱导相干声子,"研究时的加州理工学院博士生、本研究的共同第一作者Haw-Wei Lin说。"这种机制与共振和线性吸收过程有着本质区别,它涉及两个太赫兹光子的能量总和与声子模式的能量总和相匹配"。由于通过这种和频过程可以激发的声子模式的对称性完全不同于更典型的共振线性过程,因此本研究中成功使用的激发过程对于完全控制材料中的原子运动非常重要。这项研究成果的意义超出了基础研究的范畴,有望在现实世界中得到广泛应用。"通过和频激发过程,我们可以利用太赫兹激发相干地控制二维原子位置,"Kusaba说。"这可能为控制 TMD 的电子状态打开大门,这对于开发谷电技术和使用 TMD 的电子设备,实现低功耗、高速计算和专用光源,是大有可为的"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

日本扩大半导体出口控制

日本扩大半导体出口控制 向所有国家(包括最受惠的贸易伙伴韩国、新加坡和台湾)的此类货物将需要出口管制官员的批准。日本经济产业省周五表示,此举旨在更好地监管军事用途零部件的出口,并与世界各地的类似举措保持一致。日本经济产业省表示,经过截至 5 月 25 日的公众意见征询期后,这一变化最早将于 7 月生效。去年,日本扩大了对23种尖端芯片制造技术的出口限制。这项措施是在美国限制中国获得关键半导体工艺之后采取的。华盛顿官员游说日本和荷兰等国际伙伴对中国实施贸易制裁,美国将中国视为地缘政治和潜在的军事竞争对手。美国要求日本荷兰加强半导体管制据日本经济新闻报道称,美国政府2022年10月启动制造设备等广泛领域的半导体出口管制。这是因为认为半导体可以左右人工智能(AI)和自动驾驶等新一代技术,已成为直接关系到国力的战略物资。此举意在遏制中国的技术创新,以有利地位争夺主导权。美国政府还要求日本和荷兰效仿,两国分别在2023年加强了管制。但从目前来看,以管制之外的中高端制造设备为中心,相关产品的对华出口正在急剧增加。但危机感增加的美国政府认为,有必要敦促在制造设备领域具有优势的日本和荷兰采取进一步措施。据该报,按照现行的监管标准,对于制造电路线宽在10~14纳米(纳米为10亿分之1米)以下的尖端半导体所需的制造设备实施全面的出口管制。美国要求扩大到面向被称为“通用产品”的一般半导体的部分设备。这一要求被认为可能是考虑到在半导体晶圆上烧制电子电路的光刻设备、将存储元件立体堆叠起来的蚀刻设备等。在日本企业中,尼康和Tokyo Electron拥有很强的技术实力。消息说,似乎还针对信越化学工业涉足的感光材料(光刻胶)等要求限制对华出口。该材料是电路转印不可或缺的材料,目的是从材料方面切断半导体生产。美国要求荷兰停止在2023年管制之前出售给中国的制造设备的维修和服务。目前荷兰企业阿斯麦(ASML)控股等被认为仍在继续提供服务。日本经济新闻引述彭博社报道称,美国政府还要求德国和韩国减少制造设备所需零部件的供应。此次加强管制也会对盟国造成一定影响。尽管如此,鉴于中国的半导体技术迅速提高的现状,美国优先考虑的是扩大管制对象。 ... PC版: 手机版:

封面图片

全球首个由石墨烯材料制成的功能性半导体问世

全球首个由石墨烯材料制成的功能性半导体问世 近日,中国和美国科研人员联合研制出世界上第一个由石墨烯材料制成的功能性半导体。研究人员表示,这预示着一个电子新时代的到来,它为研制更小、更快、更高效的电子设备铺平了道路。不过,距离石墨烯半导体完全落地,估计还要10到15年。 、、《》杂志

封面图片

小变化,大影响:同位素研究有望改变二维半导体工程

小变化,大影响:同位素研究有望改变二维半导体工程 研究人员发现,改变单层二硫化钼半导体中钼的同位素质量,可以改变该层在光照下发出的光的颜色。这项研究揭示了同位素工程设计二维材料新技术的潜力。资料来源:Chris Rouleau/ORNL,美国能源部同位素是一种元素家族中的成员,它们的质子数相同,但中子数不同,因此质量也不同。同位素工程学传统上侧重于增强在三维(或三维)范围内具有统一特性的所谓块体材料。但由 ORNL 领导的新研究推进了同位素工程的前沿领域,即电流被限制在平面晶体内的二维(或二维)范围内,而且一层只有几个原子厚。二维材料前景广阔,因为它们的超薄特性可以实现对其电子特性的精确控制。ORNL科学家肖凯说:"当我们在晶体中置换一种较重的钼同位素时,我们在单层二硫化钼的光电特性中观察到了令人惊讶的同位素效应,这种效应为设计用于微电子、太阳能电池、光电探测器甚至下一代计算技术的二维光电器件带来了机遇。"研究小组成员于一玲利用不同质量的钼原子,生长出了原子薄二硫化钼的同位素纯二维晶体。在光激发或光刺激下,于发现晶体发出的光的颜色发生了微小变化。肖说:"出乎意料的是,钼原子较重的二硫化钼发出的光向光谱的红色端偏移得更远,这与人们对块状材料的预期偏移相反。红色偏移表明材料的电子结构或光学特性发生了变化。"肖和研究小组与中佛罗里达大学的理论家沃洛迪米尔-特科夫斯基(Volodymyr Turkowski)和塔拉特-拉赫曼(Talat Rahman)合作,发现声子(即晶体振动)一定会在这些超薄晶体的有限尺寸内以意想不到的方式散射激子(即光激发子)。他们发现这种散射如何使较重同位素的光带隙向光谱的红色端移动。"光带隙"是指材料吸收或发射光所需的最小能量。通过调整带隙,研究人员可以使半导体吸收或发射不同颜色的光,这种可调性对于设计新设备至关重要。ORNL 的 Alex Puretzky 描述了生长在基底上的不同晶体如何因基底的区域应变而导致发射颜色的微小变化。为了证明异常同位素效应,并测量其大小以便与理论预测进行比较,于培育了二硫化钼晶体,在一个晶体中含有两种钼同位素。肖说:"我们的工作是史无前例的,因为我们合成了含有两种相同元素但质量不同的同位素的二维材料,并在单层晶体中以可控和渐进的方式横向连接了同位素。这使我们能够在二维材料中观察到光学特性的内在异常同位素效应,而不会受到不均匀样品的干扰。"研究结果表明,即使原子薄的二维半导体材料中同位素质量发生微小变化,也会影响光学和电子特性,这一发现为继续研究提供了重要依据。"以前,人们认为要制造光伏和光电探测器等设备,我们必须将两种不同的半导体材料结合起来,制造结来捕获激子并分离它们的电荷。但实际上,我们可以使用相同的材料,只需改变其同位素,就能制造出捕获激子的同位素结,"肖说。"这项研究还告诉我们,通过同位素工程,我们可以调整光学和电子特性,从而设计出新的应用。"在未来的实验中,肖和团队计划与高通量同位素反应堆和美国国家实验室同位素科学与工程局的专家合作。这些设施可以提供各种高浓缩同位素前驱体,用于生长不同的同位素纯二维材料。然后,研究小组可以进一步研究同位素对自旋特性的影响,以便将其应用于自旋电子学和量子发射。描述这项研究的论文发表在《科学进展》(Science Advances)上。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

哈佛大学研制出大尺寸玻璃金属膜 用于捕捉天体的高分辨率图像

哈佛大学研制出大尺寸玻璃金属膜 用于捕捉天体的高分辨率图像 哈佛大学的科学家们利用先进的纳米制造技术,创造出一种突破性的 10 厘米玻璃金属膜,用于捕捉天体的高分辨率图像。这种适合大规模生产的大型金属膜为空间科学和电信领域带来了新的可能性,其成像性能可与传统镜头媲美。上图是 metalens 从马萨诸塞州剑桥市一栋大楼的屋顶拍摄的月球图像。图片来源:Capasso 实验室/哈佛 SEAS这项研究最近发表在《ACS Nano》杂志上。纳米加工技术的突破"利用最先进的半导体代工工艺在一个前所未有的大平面透镜上精确控制数百亿纳米柱尺寸的能力是一项纳米制造壮举,它为空间科学和技术带来了令人兴奋的新机遇,"SEAS应用物理学罗伯特-L-华莱士(Robert L. Wallace)教授兼电气工程文顿-海斯(Vinton Hayes)高级研究员、该论文的资深作者费德里科-卡帕索(Federico Capasso)说。大多数平面金属透镜利用数百万个柱状纳米结构聚焦光线,其大小与一块闪粉差不多。2019 年,卡帕索和他的团队利用一种名为深紫外(DUV)投影光刻的技术开发出了厘米级的金属透镜,这种技术可以投影形成纳米结构图案,直接蚀刻到玻璃晶片上,省去了以往金属透镜所需的耗时的写入和沉积过程。剑桥科学中心屋顶的 metalens 拍摄的天鹅座北美星云图像。图片来源:Capasso 实验室/哈佛 SEAS紫外投影光刻技术通常用于在智能手机和计算机的硅芯片上绘制精细的线条和形状。曾在 SEAS 就读研究生、现为 Capasso 团队博士后的 Joon-Suh Park 证明,该技术不仅可用于批量生产金属透镜,还能增大其尺寸,以应用于虚拟现实和增强现实。但是,要将金属膜做得更大,以便应用于天文学和自由空间光通信,这就带来了一个工程问题。克服工程挑战"光刻工具有一个很大的局限性,因为这些工具是用来制造计算机芯片的,所以芯片尺寸被限制在不超过20至30毫米,"论文共同第一作者Park说。"为了制造直径为 100 毫米的透镜,我们需要找到一种绕过这一限制的方法"。Park 和研究小组开发出了一种利用 DUV 投影光刻工具拼接多个纳米柱图案的技术。研究人员将透镜分为 25 个部分,但考虑到旋转对称性,只使用一个象限的 7 个部分,结果表明 DUV 投影光刻技术可以在几分钟内将 187 亿个设计好的纳米结构图案刻画到 10 厘米的圆形区域上。研究小组还开发了一种垂直玻璃蚀刻技术,可以在玻璃上蚀刻出高纵横比、光滑侧壁的纳米柱。SEAS 博士后研究员、论文共同第一作者 Soon Wei Daniel Lim 说:"使用相同的 DUV 投射光刻技术,我们可以在更大的玻璃直径晶片上生产大直径、像差校正元光学器件或更大的透镜,因为相应的 CMOS 制造工具在业内越来越多。"这种直径为 10 厘米的玻璃金属镜片能以高分辨率拍摄太阳、月亮和遥远星云的图像。图片来源:Capasso 实验室/哈佛大学 SEASLim 在全面模拟和描述大规模制造过程中可能出现的所有制造误差以及这些误差如何影响金属透镜的光学性能方面发挥了主导作用。在解决了可能存在的制造难题后,研究人员展示了金属膜在天体成像方面的强大功能。Park 和研究小组将 metalens 安装在带有彩色滤光片和相机传感器的三脚架上,然后登上哈佛大学科学中心的屋顶。在那里,他们拍摄了太阳、月球和北美星云的图像,北美星云是天鹅座的一个暗星云,距离地球约 2590 光年。卡帕索实验室的研究生、论文合著者阿尔曼-阿米尔詹(Arman Amirzhan)说:"我们能够获得非常详细的太阳、月球和星云图像,这些图像可与传统镜头拍摄的图像相媲美。"研究人员仅使用金属镜片,就能拍摄到与美国国家航空航天局当天拍摄的图像相同的太阳黑子群。这种透镜可以经受住极热、极冷和航天发射过程中的剧烈振动,而不会出现任何损坏或光学性能下降。由于其尺寸和单片玻璃成分,该透镜还可用于远距离电信和定向能量传输应用。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人