新南威尔士大学实现以四种不同方式将数据写入单个原子

新南威尔士大学实现以四种不同方式将数据写入单个原子 传统计算机能以 0 或 1 的形式处理和存储信息,而量子计算机则能以 0 或 1 的形式处理和存储信息,并同时处理和存储两者的叠加。随着量子比特(量子比特)的增加,量子计算机的处理能力将呈指数级增长,从而使它们能够解决对普通计算机来说过于复杂的问题。问题是,操纵这些量子比特可能很棘手,尤其是当量子计算机开始使用越来越多的量子比特时。但现在,悉尼新南威尔士大学(UNSW)的科学家们展示了如何根据每次的需要,以四种不同的方式将数据写入量子比特(这里指的是单个原子)。这种原子是一种叫做锑的元素,它可以被植入硅芯片中,取代其中的一个硅原子。之所以选择这种重原子,是因为它的原子核已经包含了八个独立的量子态,可以用来编码量子数据。此外,它的电子本身也有两个量子态,这就使锑原子中的量子态总数增加了一倍,达到了 16 个(原来的 8 个量子态中的每一个,都与电子的两个量子态依次配对)。如果使用其他材料来制造一台具有 16 种状态的量子计算机,则需要四个耦合在一起的量子比特。不过,这项研究的真正突破在于研究小组如何利用四种不同的方法来操纵原子上的数据。通过振荡磁场可以控制电子。磁共振方法,如核磁共振成像仪中使用的方法,可以操纵原子核的自旋。电场也可以用来控制原子核。最后,一种被称为"翻转位"的技术可以在电场的帮助下控制原子核和电子。研究小组表示,这项研究将有助于使量子计算机变得更"密集",在更小的空间中容纳更多的量子比特。这项研究的第一作者安德烈亚-莫雷罗教授说:"我们正在投资一项更难、更慢的技术,但原因非常好,其中之一就是它能够处理的信息密度极高。在1平方毫米内有 2500 万个原子是很好的,但必须一个接一个地控制它们。我们可以灵活地利用磁场、电场或它们的任何组合来控制原子,这将为我们在扩大系统规模时提供很多选择。"下一步,研究小组计划利用这些原子对逻辑量子比特进行编码,最终为更实用的量子计算机铺平道路。这项研究发表在《自然通讯》杂志上。 ... PC版: 手机版:

相关推荐

封面图片

超密集量子计算机破局者:1 个锑原子存储 16 个量子态

超密集量子计算机破局者:1 个锑原子存储 16 个量子态 通常情况下,1 个量子位(qubits)对应 1 个量子态(quantum state)。悉尼新南威尔士大学(UNSW)的研究人员证明,锑(Sb)原子可以同时拥有 16 种量子态。 锑原子本身有 8 个量子态,此外其电子还能额外提供 2 个量子态,而通过叠加锑原子和锑电子,就能产生总共 16 种量子态,这就像未来的 3D NAND,每个单元可以写入 16 位数据。

封面图片

物理学家创下原子量子计算机世界纪录:实现超过1000量子位

物理学家创下原子量子计算机世界纪录:实现超过1000量子位 扩大量子系统的规模对于推进量子计算至关重要,因为系统越大,其优势就越明显。达姆施塔特工业大学的研究人员在实现这一目标方面取得了重大进展。他们的研究成果现已发表在著名期刊《光学》(Optica)上。基于二维光镊阵列的量子处理器是开发量子计算和模拟的最有前途的技术之一,可在未来实现非常有益的应用。从药物开发到优化交通流的各种应用都将受益于这项技术。迄今为止,这些处理器已经能够容纳几百个单原子量子系统,其中每个原子代表一个量子比特或量子比特,是量子信息的基本单位。为了取得进一步的进展,有必要增加处理器中量子比特的数量。达姆施塔特工业大学物理系"原子-光子-量子"研究小组的格哈德-伯克尔(Gerhard Birkl)教授领导的团队现已实现了这一目标。在 2023 年 10 月初首次发表在 arXiv 预印本服务器上、现在又经过科学同行评审发表在著名期刊《光学》(Optica)上的研究文章中,该团队报告了世界上首次成功实现在一个平面上包含 1000 多个原子量子比特的量子处理架构的实验。Birkl 谈到他们的成果时说:"我们非常高兴能够率先突破 1,000 个可单独控制的原子量子比特的大关,因为还有很多其他优秀的竞争对手紧随其后。"研究人员在实验中证明,他们将最新的量子光学方法与先进的微光学技术相结合的方法使他们能够大大提高目前对可访问量子比特数量的限制。这是通过引入"量子比特增殖"的新方法实现的。这种方法使他们克服了激光器性能有限对可用量子比特数量的限制。1305个单原子量子比特被装载到一个具有3000个陷阱位点的量子阵列中,并重新组装成具有多达441个量子比特的无缺陷目标结构。通过并行使用多个激光源,这一概念突破了迄今为止几乎无法逾越的技术界限。对于许多不同的应用来说,1000 量子比特被视为一个临界值,量子计算机所承诺的效率提升可以在这个临界值上得到首次展示。因此,世界各地的研究人员一直在为率先突破这一门槛而努力。最近发表的研究成果表明,对于原子量子比特,Birkl 教授领导的研究小组在世界范围内首次实现了这一突破。该科学出版物还介绍了激光源数量的进一步增加将如何在短短几年内使量子比特数量达到 10000 甚至更多。编译来源:ScitechDailyDOI: doi:10.1364/OPTICA.513551 ... PC版: 手机版:

封面图片

量子计算机有第3种方式,日本走在前列

量子计算机有第3种方式,日本走在前列 在量子计算机的开发竞争舞台上,“第3种方式”正在迅速浮出水面。那就是被称为“冷原子型”的技术,采用冷却至极低温度的原子。与其他方式不同,日本的研发团队走在世界的前列。这种方式在日本政府研发计划中的比重近年来提升,或将成为日本推进量子计算机实用化的开发战略的关键。 在位于爱知县冈崎市的自然科学研究机构分子科学研究所,教授大森贤治的研究室里,实验装置的显示屏上规则地纵横排列的颗粒闪闪发光。显示出冷却至极低温度、已停止运动的一个个金属原子(铷)在真空容器当中浮游的情形。 冷原子量子计算机把像这样排列的一个个原子用作处理量子计算的“量子位”。研发团队利用这个实验装置实现了400个量子位,大幅超过现有量子计算机上实现的量子位数量。大森贤治教授表示,“到1~2年后将轻松增至1000个量子位。从原理上讲可增至1万个量子位”。 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

突破性方法生产的超纯硅有望引发量子计算革命

突破性方法生产的超纯硅有望引发量子计算革命 项目联合导师、墨尔本大学的戴维-贾米森(David Jamieson)教授说,今天(2024年5月7日)发表在《自然》杂志《通讯材料》(CommunicationMaterials)上的这一创新成果,使用了植入纯稳定硅晶体中的磷原子量子比特,通过延长众所周知的脆弱量子相干的持续时间,可以克服量子计算的一个关键障碍。"脆弱的量子相干性意味着计算误差会迅速积累。有了我们的新技术提供的强大相干性,量子计算机可以在几小时或几分钟内解决一些传统或'经典'计算机甚至超级计算机需要几个世纪才能解决的问题,"杰米森教授说。当一个量子比特(如原子核、电子或光子)处于多种状态的量子叠加时,它就是一个量子物体。当量子比特恢复到单一状态时,相干性就会消失,变成像传统计算机比特那样的经典物体,而传统计算机比特永远只有一个或零,永远不会处于叠加状态。量子比特或量子比特量子计算机的构件容易受到环境微小变化的影响,包括温度波动。即使在接近绝对零度(零下 273摄氏度)的宁静冰箱中运行,目前的量子计算机也只能在极短的几分之一秒内保持无差错的一致性。曼彻斯特大学的联合导师理查德-库里(Richard Curry)教授说,超纯硅允许构建高性能量子比特器件,而这是为可扩展量子计算机铺平道路所需的关键部件。"我们所能做的就是有效地创造出构建硅基量子计算机所需的关键'砖块'。库里教授说:"这是创造一项有可能改变人类的技术的关键一步。"主要作者、墨尔本大学/曼彻斯特大学联合培养的博士生 Ravi Acharya 在曼彻斯特大学 P-NAME 聚焦离子束实验室准备硅芯片,以便进行富集。资料来源:墨尔本大学/曼彻斯特大学领衔作者、曼彻斯特大学/墨尔本大学库克森联合学者拉维-阿查里亚说,硅芯片量子计算的最大优势在于它使用了与制造当今计算机芯片相同的基本技术。"目前,日常计算机中的电子芯片由数十亿个晶体管组成,这些晶体管也可用于制造硅量子设备的量子比特。迄今为止,制造高质量硅量子比特的能力部分受限于所用硅起始材料的纯度。我们在这里展示的突破性纯度解决了这一问题"。贾米森教授说:"新型高度纯化的硅计算机芯片可以容纳和保护量子比特,使它们能够更长时间地保持量子相干性,从而能够进行复杂的计算,并大大减少纠错的需要。我们的技术为可靠的量子计算机开辟了道路,有望在人工智能、安全数据和通信、疫苗和药物设计以及能源利用、物流和制造等领域为整个社会带来阶跃式变革。"硅由不起烟的海滩沙制成,是当今信息技术产业的关键材料,因为它是一种丰富而多用途的半导体:它可以作为电流的导体或绝缘体,具体取决于添加到其中的其他化学元素。贾米森教授说:"其他人正在尝试使用替代品,但我们相信硅是量子计算机芯片的主要候选者,它将实现可靠的量子计算所需的持久相干性。"共同作者(左)David Jamieson 教授(墨尔本大学)和(右)Maddison Coke 博士(曼彻斯特大学)在曼彻斯特大学检查用于硅富集项目的 P-NAME 聚焦离子束系统。资料来源:墨尔本大学/曼彻斯特大学他说:"问题在于,虽然天然存在的硅主要是理想的同位素硅-28,但也有大约 4.5% 的硅-29。硅-29 在每个原子核中都有一个额外的中子,它就像一块微小的流氓磁铁,会破坏量子相干性并产生计算误差。"研究人员将一束聚焦的纯硅-28 高速射向硅芯片,使硅-28 逐渐取代芯片中的硅-29 原子,将硅-29 从百万分之四点五减少到百万分之二(0.0002%)。"好消息是,要将硅纯化到这种程度,我们现在可以使用一台标准机器离子注入机你可以在任何半导体制造实验室找到它,并根据我们设计的特定配置进行调整。"在之前发表的与澳大利亚研究理事会量子计算和通信技术卓越中心(ARC Centre of Excellence for Quantum Computation and Communication Technology)合作进行的研究中,墨尔本大学利用纯度较低的硅材料创造了 30 秒的单量子比特相干世界纪录,并且至今仍保持着这一纪录。30 秒的时间足以完成无差错的复杂量子计算。贾米森教授说:"现有最大的量子计算机拥有1000多个量子比特,但由于失去了一致性,在几毫秒内就会出现错误。既然我们已经可以生产出极纯的硅-28,我们的下一步将是证明我们可以同时维持许多量子比特的量子相干性。一台仅有 30 个量子比特的可靠量子计算机在某些应用中的性能将超过当今的超级计算机。"这项最新研究工作得到了澳大利亚和英国政府的研究资助。贾米森教授与曼彻斯特大学的合作得到了英国皇家学会沃尔夫森访问学者奖学金的支持。据澳大利亚联邦科学与工业研究组织 2020 年的一份报告 估计,到 2040 年,澳大利亚的量子计算有可能创造 1 万个工作岗位和 25 亿美元的年收入。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

IBM和日本研究所开发下一代量子计算机 拥有10000个量子比特

IBM和日本研究所开发下一代量子计算机 拥有10000个量子比特 量子计算机以解决传统计算机无法解决的复杂问题而闻名。它们有望帮助发现新药,通过更高效的分销路线改善物流,以及许多其他应用。该研究所和IBM预计将在未来几天签署谅解备忘录并宣布这笔交易。据该研究所称,这将是IBM首次与外国研究机构在如此大规模的量子计算领域展开合作。正在开发的量子计算机预计将于2029年投入使用。该计算机拥有超过10000个量子比特,有望无误地计算高级组合。合作伙伴还将开发下一代量子计算机所需的半导体和超导集成电路。量子计算机在接近绝对零度的极低温度下运行,因此需要能够承受极端温度的半导体和电路。该研究所隶属于日本经济产业省,以其在人工智能(AI)相关技术方面的实力而闻名,并拥有与IBM合作项目所需的专利。它还希望引入日本零部件制造商,实现量产。IBM预计将在2025年开始销售拥有1000量子比特的量子计算机。该研究所和IBM将说服日本公司使用它们。该研究所将通过培训日本公司使用量子计算机做出贡献,例如制药商。量子计算机仍处于发展阶段。现有的133量子比特的量子计算机仍然会出错,在研究中使用时通常需要超级计算机的帮助。预计10000量子比特的版本无需超级计算机的帮助即可使用。科学家表示,要使量子计算机投入商业使用,硬件需要达到20000到30000个量子比特的水平。 ... PC版: 手机版:

封面图片

俄罗斯计划到2030年研制出超过100量子比特的量子计算机

俄罗斯计划到2030年研制出超过100量子比特的量子计算机 俄罗斯量子中心联合创始人、俄国家原子能集团总裁顾问鲁斯兰•尤努索夫在接受采访时说,俄罗斯计划到2030年研制出超过100量子比特的量子计算机。此前俄国家原子能集团宣布了到2030年研制出100量子比特的量子计算机计划。尤努索夫说:“但我们现在正制定到2030年的路线图,计划建造一台超过100量子比特的量子计算机。”他指出:“我们去年年底在不同平台上展现了20-25量子比特。今年我们必须展现50。我们知道如何去做。我们预计,下半年,秋天应该会成功。”

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人