中国科研人员国际上首次认证宇宙线起源

中国科研人员国际上首次认证宇宙线起源 △科研成果宣传图该成果北京时间2月26日以封面文章的形式在学术期刊《Science Bulletin》(《科学通报》)发表。△巨型超高能伽马射线泡状结构模拟示意图△大质量恒星模拟示意图科研人员发现的巨型超高能伽马射线泡状结构直径约为1000光年,其核心到地球直线距离大约5000光年。通过对该泡状结构内部的研究,科研人员认为其内部存在宇宙线加速器,也就是宇宙线的起源天体,并且这个起源天体源源不断地在产生超过1亿亿电子伏特能量的宇宙线粒子。通过研究,科研人员推断位于这个泡状结构中心附近的大质量恒星星团可能就是他们接收到的宇宙线的起源,科研人员称其为“星协”。△超高能宇宙线传播到星际空间模拟示意图通过进一步分析,科研人员发现“星协”是由很多表面温度约15000摄氏度到35000摄氏度的恒星组成的密集星团。这些恒星的辐射强度是太阳的几百倍甚至上百万倍。它们巨大的辐射压能够将恒星表面物质吹出,形成强烈的星风,速度可达每秒3000公里。星风与周围星际介质的碰撞以及星风之间的猛烈碰撞产生了强激波的极端环境,从而形成强大的粒子加速器。通过分析,科研人员认证这就是宇宙线加速源,也就是宇宙线起源天体。这一发现在国际科学界尚属首次。未来,高海拔宇宙线观测站将可能探测到更多的千万亿电子伏特乃至更高能量的宇宙线的加速源,有望解决银河系宇宙线起源之谜。△超高能伽马射线光子传播到地球模拟示意图位于四川稻城海拔4410米的海子山上的高海拔宇宙线观测站(LHAASO,“拉索”)是以宇宙线观测研究为核心的国家重大科技基础设施。观测站是由5216个电磁粒子探测器、1188个缪子探测器组成的地面簇射粒子探测器阵列、7.8万平方米水切伦科夫探测器阵列,以及18台广角切伦科夫望远镜组成的复合阵列。该观测站于2021年7月建成并开始高质量稳定运行,2023年通过国家验收,是国际上最灵敏的超高能伽马射线探测装置。△位于四川稻城的高海拔宇宙线观测站照片(总台央视记者 帅俊全 褚尔嘉) ... PC版: 手机版:

相关推荐

封面图片

中国科研人员在月壤样本中首次发现天然石墨烯

中国科研人员在月壤样本中首次发现天然石墨烯 来自吉林大学、中国科学院金属研究所、国家深空探测实验室、探月与航天工程中心等的科研人员通过对嫦娥五号钻采岩屑月壤的观察分析,首次发现了天然形成的少层石墨烯。相关研究为月球的地质活动和演变历史以及月球的环境特点提供了新见解,拓宽了人们对月壤复杂矿物组成的认知,为月球的原位资源利用提供了重要信息及线索。

封面图片

中国科研人员在月壤样本首次发现天然石墨烯

中国科研人员在月壤样本首次发现天然石墨烯 中国科研人员通过对嫦娥五号钻采岩屑月壤的观察分析,首次发现了天然形成的少层石墨烯。 据科技日报星期天(6月23日)报道,来自吉林大学、中国科学院金属研究所、国家深空探测实验室、探月与航天工程中心等的科研人员通过对嫦娥五号钻采岩屑月壤的观察分析,首次发现了天然形成的少层石墨烯。 报道称,相关研究为月球的地质活动和演变历史以及月球的环境特点提供了新见解,为月球的原位资源利用提供了重要信息及线索。 据估计,星际碳总量中约1.9%是以石墨烯的形式存在,其形态和性质由特定的形成过程决定。因此,天然石墨烯的组成和结构特征将为星体的地质演化和月球的原位资源利用提供重要的参考和信息。 在这项研究中,科研团队采用电镜拉曼联用技术,在月壤样品含碳量相对较高的位置采集了拉曼光谱,确认了月壤样品中石墨碳的结晶质量相对较高。值得注意的是,月壤样品中存在碳的区域含有铁化合物,这与石墨烯的形成密切相关。 科研团队还通过扫描电子显微成像、透射电子显微成像、冷冻条件下球差电镜的高角环形暗场像和高分辨像、能谱和电子能量损失谱、飞行二次质谱等多种表征技术的综合运用及测试结果的多方面严谨比对分析,探究并证实了月壤样品中检测到的石墨碳是少层石墨烯。 2020年12月,中国月球探测器嫦娥五号从月球带回1731克月壤样品,是人类首次获得的月表年轻火山岩区样品。截至今年6月初,嫦娥五号月壤样品已完成向40家科研机构的114个科研团队发放258份77.7克,目前已有多个领域70余项嫦娥五号月球样品研究成果在中外重要学术期刊发表。 石墨烯具有优秀的力学特性和超强导电性导热性等出色的材料特性,其下游应用主要涵盖基础学科、新能源电池、柔性显示屏、传感器及复合材料等领域。 2024年6月24日 7:55 AM

封面图片

我科研人员首次观测到电磁波动态传播

我科研人员首次观测到电磁波动态传播 哈尔滨工业大学(深圳)空间科学与应用技术研究院教授袁丁及其合作研究者首次观测到电磁波(光波)动态传播,证实太阳日冕的特殊结构以及行星等大型天体可作为电磁信号放大器,或可实现星际间通讯或者能量传输。相关研究成果发表在《自然·通讯》上。 能向半人马座α广播了是吧? 报道出了偏差。相关论文说的是太阳耀斑产生的磁流体力学波在冕洞上发生有限的聚焦,聚焦后的能量还是在太阳上。

封面图片

美国建造的詹姆斯·韦布空间望远镜25日从法属圭亚那库鲁航天中心发射升空并顺利入轨。科研人员期待借助该望远镜探究宇宙各阶段历史,了

美国建造的詹姆斯·韦布空间望远镜25日从法属圭亚那库鲁航天中心发射升空并顺利入轨。科研人员期待借助该望远镜探究宇宙各阶段历史,了解众多天体系统的起源。 美国东部时间25日7时20分(北京时间20时20分),韦布空间望远镜由阿丽亚娜5型火箭发射升空。在飞行27分钟后,该望远镜与火箭分离并顺利进入预定轨道。最终韦布空间望远镜将在距地球约160万千米的轨道运行,并在太空中进行为期约6个月的调试,包括展开望远镜和遮阳板、冷却设备、校准等。 据美国国家航空航天局介绍,韦布空间望远镜是该机构迄今建造的最大、功能最强的空间望远镜。其主镜直径6.5米,由18片巨大六边形子镜构成,配有5层可展开的遮阳板。由于体型巨大,韦布空间望远镜以折叠状态发射。 韦布空间望远镜由美国航天局与欧洲航天局、加拿大航天局联合研究开发,被认为是哈勃空间望远镜的“继任者”。哈勃空间望远镜主要在可见光和紫外波段观测,而韦布空间望远镜主要在红外波段观测。 据美国航天局介绍,韦布空间望远镜将观测135亿多年前宇宙中第一批恒星是如何诞生的,以及第一批星系怎样形成的。随着宇宙持续膨胀,这批早期发光天体发出的紫外光和可见光朝光谱的红端移动,波长变长(这种现象被称为红移),最终以红外光的方式在今天抵达近地空间,这会被韦布空间望远镜捕捉到。此外,韦布空间望远镜还将观测太阳系行星和其他遥远天体,帮助科研人员了解诸多天体系统的起源及演化进程。 韦布空间望远镜原定于24日发射升空,后因天气原因推迟一天。预计该望远镜在2022年6月底前可正式“上岗”。 (新华社,图片:路透社)

封面图片

中法天文卫星已探测到多个伽马射线暴 有助于研究宇宙起源和演化

中法天文卫星已探测到多个伽马射线暴 有助于研究宇宙起源和演化 从中国科学院获悉,今年 6 月 22 日发射升空的中法天文卫星在近日已经探测到多个伽马射线暴。卫星平台目前工作正常,为后续开展更多科学观测与研究奠定了基础。

封面图片

中国科研人员在月壤样本中发现天然石墨烯

中国科研人员在月壤样本中发现天然石墨烯 据悉,在广袤的星际碳总量中,石墨烯占据了约1.9%的比例。其独特的形态和性质,深受其形成过程的影响。因此,这种天然形成的石墨烯为我们提供了宝贵的参考信息,有助于我们更深入地理解星体的地质演化以及月球资源的原位利用。科研团队采用了包括扫描电子显微成像、透射电子显微成像在内的多种先进表征技术,并进行了严谨的比对分析。他们最终证实,在月壤样品中检测到的石墨碳正是少层石墨烯。这一成果不仅彰显了科研团队的专业素养,也进一步丰富了我们对月球地质构造的认识。科研团队进一步指出,月球上少层石墨烯和石墨碳的形成可能与太阳风和月球早期的火山喷发活动密切相关。这两种自然现象共同诱导的矿物催化进程,可能是形成这些独特材料的关键因素。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人