斯坦福大学研究团队改进了基于铌的量子比特 使其与领先的替代品相媲美

斯坦福大学研究团队改进了基于铌的量子比特 使其与领先的替代品相媲美 在过去的 15 年里,铌作为核心量子比特材料经历了几次平淡无奇的打击之后,就一直坐冷板凳。铌因其作为超导体的卓越品质而备受推崇,一直是量子技术的理想候选材料。然而,科学家们发现铌难以作为核心量子比特元件进行工程设计,因此它被降级为超导量子比特团队的第二根弦。现在,斯坦福大学大卫-舒斯特(David Schuster)领导的研究小组展示了一种制造铌基量子比特的方法,这种量子比特可与同类最先进的量子比特相媲美。芝加哥大学物理科学部的亚历山大-安费洛夫(Alexander Anferov)是这项成果的主要科学家之一。该团队的研究成果发表在《物理应用评论》(Physical Review Applied)上,并得到了美国能源部阿贡国家实验室领导的美国能源部国家量子信息科学研究中心 Q-NEXT 的部分支持。通过利用铌的突出特性,科学家们将能够扩展量子计算机、网络和传感器的功能。这些量子技术利用量子物理学来处理信息,其处理方式超越了传统技术,有望改善医疗、金融和通信等各个领域。约瑟夫森结是超导比特的信息处理核心。图为斯坦福大学的大卫-舒斯特及其团队设计的铌约瑟夫森结。他们的结设计使铌重新成为核心比特材料的可行选择。图片来源:Alexander Anferov/芝加哥大学普利兹克纳米加工设施铌的优势说到超导量子比特,铝一直独占鳌头。铝基超导量子比特可以在数据不可避免地瓦解之前存储相对较长的信息。这些较长的相干时间意味着有更多的时间来处理信息。铝基超导量子比特的最长相干时间为几亿分之一秒。相比之下,近年来,最好的铌基量子比特的相干时间要短 100 倍几千亿分之一秒。尽管量子比特的寿命很短,但铌仍具有吸引力。铌基量子比特能在比铝基量子比特更高的温度下工作,因此需要的冷却更少。与铝基量子比特相比,铌基量子比特的工作频率范围是铝基量子比特的八倍,工作磁场范围是铝基量子比特的 18000 倍,从而扩大了超导量子比特家族的应用范围。在一个方面,两种材料之间没有竞争:铌的工作范围超过了铝。但多年来,由于相干时间较短,铌基量子比特一直未能问世。"没有人真正用铌结制造出那么多的量子比特,因为它们受到相干性的限制,"安费洛夫说。但我们小组希望制造一种能在更高温度和更大频率范围(1 K 和 100 千兆赫)下工作的量子比特。而对于这两种特性来说,铝是不够的。我们需要别的东西。"于是,研究小组再次对铌进行了研究。具体来说,他们研究了铌约瑟夫森结。约瑟夫森结是超导四比特的信息处理核心。在经典信息处理中,数据以比特形式存在,要么是 0,要么是 1。在量子信息处理中,量子比特是 0 和 1 的混合物。超导量子比特的信息作为 0 和 1 的混合物"存活"在结内。超导结在这种混合状态下维持信息的时间越长,超导结和量子位就越好。约瑟夫森结的结构就像三明治,由挤在两层超导金属之间的一层不导电材料组成。导体是一种易于电流通过的材料。超导体则更胜一筹:它能以零电阻传输电流。在混合量子态下,电磁能在结点外层之间流动。典型的、值得信赖的铝约瑟夫森结由两层铝和中间一层氧化铝组成。典型的铌结由两层铌和中间一层氧化铌组成。舒斯特研究小组发现,连接处的氧化铌层消耗了维持量子态所需的能量。他们还发现,铌结的支撑结构是能量损失的主要来源,导致量子比特的量子态消失。研究小组的突破涉及新的结点排列和新的制造技术。新的安排需要一个熟悉的朋友:铝。这种设计摒弃了耗能的氧化铌。它不再使用两种不同的材料,而是使用了三种。这样就形成了一个低损耗的三层结铌、铝、氧化铝、铝、铌。"我们采用了这种两全其美的方法,"安费洛夫说。"铝薄层可以继承附近铌的超导特性。这样,我们既能利用铝的成熟化学特性,又能拥有铌的超导特性"。该研究小组的制造技术包括移除以前方案中支撑铌结的支架。他们找到了一种方法,既能保持结的结构,又能去除在以前的设计中妨碍相干性的会导致损耗的多余材料。安费洛夫说:"事实证明,扔掉垃圾是有帮助的。"一个新的量子位诞生了舒斯特研究小组将他们的新结点纳入超导量子比特后,相干时间达到了 6200 万分之一秒,比性能最好的铌基量子比特长 150 倍。这种量子比特的品质因数量子比特存储能量的指数也达到了 2.57 x105,比以前的铌基量子比特提高了 100 倍,与铝基量子比特的品质因数相比也不遑多让。安费洛夫说:"我们制造的这种结仍然具有铌的优良特性,而且我们改进了结的损耗特性。我们可以直接超越任何铝制量子比特,因为铝在很多方面都是一种劣质材料。我现在有了一种在更高温度下不会死亡的量子比特,这是最大的亮点。"这些成果很可能会提升铌在超导量子比特材料中的地位。舒斯特说:"这是很有希望的首次尝试,因为铌结复活了。铌基量子比特具有广泛的操作范围,我们为未来的量子技术开辟了全新的能力"。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

量子混杂:与黑洞相媲美的化学反应

量子混杂:与黑洞相媲美的化学反应 然而,莱斯大学理论家彼得-沃林(Peter Wolynes)和伊利诺伊大学香槟分校的合作者的最新研究表明,分子在扰乱量子信息方面可以像黑洞一样强大。他们结合黑洞物理学和化学物理学的数学工具,证明量子信息扰乱发生在化学反应中,几乎可以达到与黑洞相同的量子力学极限。这项研究成果在线发表在《美国国家科学院院刊》上 。Wolynes 说:"这项研究解决了化学物理学中一个长期存在的问题,即量子信息在分子中的扰乱速度有多快。当人们考虑两个分子结合在一起的反应时,他们认为原子只进行单一的运动,即形成一个键或断开一个键。但从量子力学的角度来看,即使是一个非常小的分子也是一个非常复杂的系统。就像太阳系中的轨道一样,分子也有大量可能的运动方式我们称之为量子态。当发生化学反应时,关于反应物量子态的量子信息会变得混乱,我们想知道信息混乱是如何影响反应速率的。"张成浩(左)和 Sohang Kundu。图片来源:Bill Wiegand/伊利诺伊大学香槟分校提供的张成浩照片;Sohang Kundu 提供的 Kundu 照片为了更好地理解量子信息是如何在化学反应中被扰乱的,科学家们借用了一种通常用于黑洞物理学的数学工具,即时序外相关器(OTOCs)。"OTOC 实际上是在 55 年前的一个非常不同的背景下发明的,当时它们被用来研究超导体中的电子如何受到杂质干扰的影响,"Wolynes 说。"它们是超导理论中使用的一种非常特殊的物体。接下来,物理学家在 20 世纪 90 年代研究黑洞和弦理论时也使用了它们。"OTOCs测量的是在某一时刻对量子系统的某一部分进行调整会对其他部分的运动产生多大影响让人们深入了解信息在整个分子中传播的速度和效率。它们是莱普诺夫指数的量子类似物,莱普诺夫指数用于测量经典混沌系统的不可预测性。伊利诺伊大学香槟分校的化学家马丁-格鲁贝莱(Martin Gruebele)是这项研究的合著者之一,他是美国国家科学基金会资助的莱斯-伊利诺伊联合缺陷适应中心(Rice-Illinois Center for Adapting Flaws as Features)的成员。他介绍说:"化学家对化学反应中的扰动非常矛盾,因为要达到反应目标,扰动是必要的,但它也会扰乱对反应的控制。了解分子在什么情况下会扰乱信息,在什么情况下不会扰乱信息,可以让我们更好地控制反应。了解 OTOCs 基本上可以让我们设定限制,什么时候这种信息真的会消失,不受我们控制,反之,什么时候我们仍然可以利用它来获得可控的结果。"Peter Wolynes(左起)、Nancy Makri 和 Martin Gruebele。图片来源:Wolynes 的照片由 Gustavo Raskosky/莱斯大学提供;Makri 的照片由 Nancy Makri 提供;Gruebele 的照片由 Fred Zwicky/伊利诺伊大学香槟分校提供。在经典力学中,粒子必须具有足够的能量来克服能量障碍才能发生反应。然而,在量子力学中,即使粒子不具备足够的能量,它们也有可能"隧穿"这一障碍。对 OTOC 的计算表明,在低温条件下,隧穿占主导地位的低活化能化学反应几乎可以在量子极限上扰乱信息,就像黑洞一样。南希-马克里(Nancy Makri)也是伊利诺伊香槟分校的化学家,她利用自己开发的路径积分法研究了当简单的化学反应模型嵌入一个更大的系统(可能是大分子自身的振动或溶剂)时会发生什么情况,并倾向于抑制混沌运动。Makri说:"在另一项研究中,我们发现大环境往往会让事情变得更有规律,并抑制我们所说的影响。因此,我们计算了与大环境相互作用的隧道系统的 OTOC,我们看到的是,扰动被熄灭了行为发生了很大变化。"研究成果的一个实际应用领域是限制如何利用隧道系统构建量子计算机的量子比特。我们需要尽量减少相互作用的隧道系统之间的信息干扰,以提高量子计算机的可靠性。这项研究还与光驱动反应和先进材料设计有关。Gruebele说:"我们有可能将这些想法扩展到这样的过程中:在这样的过程中不会只在一个特定的反应中进行隧穿,而是会有多个隧穿步骤,因为这就是涉及到电子传导的过程,例如,很多新型软量子材料,如用于制造太阳能电池和类似材料的过氧化物。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中国量子网络领域取得新突破

中国量子网络领域取得新突破 清华大学交叉信息研究院博士生冯路(左)和助理研究员黄园园(右)正在实验室研究。受访者供图清华大学交叉信息研究院助理研究员黄园园介绍,他们利用同种离子的两对超精细能级结构,分别编码出量子网络中用于与光子产生纠缠的“通讯比特”和用于存储信息的“存储比特”。 同时,利用激光还实现了两种量子比特间微秒量级的相干转换。实验发现,通过此方法制备出的通讯比特,可在数百毫秒的时间内生成离子-光子纠缠;通过自旋回波方法可延长存储比特的存储寿命,实现相干时间达到秒量级的存储量子比特。通过比较有无离子-光子纠缠生成操作时存储比特的保真度变化, 研究人员证实了两种量子比特之间低于实验精度的串扰误差,从而实现了无串扰的量子网络节点。 ... PC版: 手机版:

封面图片

今日,中国科学院量子信息与量子科技创新研究院向国盾量子交付了一款 504 比特超导量子计算芯片“骁鸿”,用于验证国盾量子自主研制

今日,中国科学院量子信息与量子科技创新研究院向国盾量子交付了一款 504 比特超导量子计算芯片“骁鸿”,用于验证国盾量子自主研制的千比特测控系统。 据官方介绍,这颗芯片刷新了国内超导量子比特数量的纪录,后续还计划通过中电信量子集团的“天衍”量子计算云平台等向全球开放。 研究人员表示,“骁鸿”芯片的主要目的,是为了推动大规模量子计算测控系统的发展,更多考虑的是通过集成更多的比特数和实现各单项指标,来满足测控系统验证的需求。 值得一提的是,虽然“骁鸿”刷新了国内超导量子比特数量的纪录,但官方强调其综合性能与此前创造量子纠缠数世界纪录的“祖冲之二号”尚有差距,不具备实现“量子计算优越性”的能力。 国盾量子计算负责人王哲辉还表示,“骁鸿”芯片将在国盾量子千比特测控系统上进行单比特门、双比特门、读取操作及测控系统性能测试,测试工作预计在今年 8 月前完成。据介绍,新测控系统集成度较上一代产品提升 10 倍以上,核心元器件使用国产化设计,在提升操控精度的同时大幅降低了成本。未来,国盾量子将面向万比特规模,进一步研发适用于可纠错量子计算机的新型测控系统。 标签: #量子计算 频道: @GodlyNews1 投稿: @GodlyNewsBot

封面图片

突破性方法生产的超纯硅有望引发量子计算革命

突破性方法生产的超纯硅有望引发量子计算革命 项目联合导师、墨尔本大学的戴维-贾米森(David Jamieson)教授说,今天(2024年5月7日)发表在《自然》杂志《通讯材料》(CommunicationMaterials)上的这一创新成果,使用了植入纯稳定硅晶体中的磷原子量子比特,通过延长众所周知的脆弱量子相干的持续时间,可以克服量子计算的一个关键障碍。"脆弱的量子相干性意味着计算误差会迅速积累。有了我们的新技术提供的强大相干性,量子计算机可以在几小时或几分钟内解决一些传统或'经典'计算机甚至超级计算机需要几个世纪才能解决的问题,"杰米森教授说。当一个量子比特(如原子核、电子或光子)处于多种状态的量子叠加时,它就是一个量子物体。当量子比特恢复到单一状态时,相干性就会消失,变成像传统计算机比特那样的经典物体,而传统计算机比特永远只有一个或零,永远不会处于叠加状态。量子比特或量子比特量子计算机的构件容易受到环境微小变化的影响,包括温度波动。即使在接近绝对零度(零下 273摄氏度)的宁静冰箱中运行,目前的量子计算机也只能在极短的几分之一秒内保持无差错的一致性。曼彻斯特大学的联合导师理查德-库里(Richard Curry)教授说,超纯硅允许构建高性能量子比特器件,而这是为可扩展量子计算机铺平道路所需的关键部件。"我们所能做的就是有效地创造出构建硅基量子计算机所需的关键'砖块'。库里教授说:"这是创造一项有可能改变人类的技术的关键一步。"主要作者、墨尔本大学/曼彻斯特大学联合培养的博士生 Ravi Acharya 在曼彻斯特大学 P-NAME 聚焦离子束实验室准备硅芯片,以便进行富集。资料来源:墨尔本大学/曼彻斯特大学领衔作者、曼彻斯特大学/墨尔本大学库克森联合学者拉维-阿查里亚说,硅芯片量子计算的最大优势在于它使用了与制造当今计算机芯片相同的基本技术。"目前,日常计算机中的电子芯片由数十亿个晶体管组成,这些晶体管也可用于制造硅量子设备的量子比特。迄今为止,制造高质量硅量子比特的能力部分受限于所用硅起始材料的纯度。我们在这里展示的突破性纯度解决了这一问题"。贾米森教授说:"新型高度纯化的硅计算机芯片可以容纳和保护量子比特,使它们能够更长时间地保持量子相干性,从而能够进行复杂的计算,并大大减少纠错的需要。我们的技术为可靠的量子计算机开辟了道路,有望在人工智能、安全数据和通信、疫苗和药物设计以及能源利用、物流和制造等领域为整个社会带来阶跃式变革。"硅由不起烟的海滩沙制成,是当今信息技术产业的关键材料,因为它是一种丰富而多用途的半导体:它可以作为电流的导体或绝缘体,具体取决于添加到其中的其他化学元素。贾米森教授说:"其他人正在尝试使用替代品,但我们相信硅是量子计算机芯片的主要候选者,它将实现可靠的量子计算所需的持久相干性。"共同作者(左)David Jamieson 教授(墨尔本大学)和(右)Maddison Coke 博士(曼彻斯特大学)在曼彻斯特大学检查用于硅富集项目的 P-NAME 聚焦离子束系统。资料来源:墨尔本大学/曼彻斯特大学他说:"问题在于,虽然天然存在的硅主要是理想的同位素硅-28,但也有大约 4.5% 的硅-29。硅-29 在每个原子核中都有一个额外的中子,它就像一块微小的流氓磁铁,会破坏量子相干性并产生计算误差。"研究人员将一束聚焦的纯硅-28 高速射向硅芯片,使硅-28 逐渐取代芯片中的硅-29 原子,将硅-29 从百万分之四点五减少到百万分之二(0.0002%)。"好消息是,要将硅纯化到这种程度,我们现在可以使用一台标准机器离子注入机你可以在任何半导体制造实验室找到它,并根据我们设计的特定配置进行调整。"在之前发表的与澳大利亚研究理事会量子计算和通信技术卓越中心(ARC Centre of Excellence for Quantum Computation and Communication Technology)合作进行的研究中,墨尔本大学利用纯度较低的硅材料创造了 30 秒的单量子比特相干世界纪录,并且至今仍保持着这一纪录。30 秒的时间足以完成无差错的复杂量子计算。贾米森教授说:"现有最大的量子计算机拥有1000多个量子比特,但由于失去了一致性,在几毫秒内就会出现错误。既然我们已经可以生产出极纯的硅-28,我们的下一步将是证明我们可以同时维持许多量子比特的量子相干性。一台仅有 30 个量子比特的可靠量子计算机在某些应用中的性能将超过当今的超级计算机。"这项最新研究工作得到了澳大利亚和英国政府的研究资助。贾米森教授与曼彻斯特大学的合作得到了英国皇家学会沃尔夫森访问学者奖学金的支持。据澳大利亚联邦科学与工业研究组织 2020 年的一份报告 估计,到 2040 年,澳大利亚的量子计算有可能创造 1 万个工作岗位和 25 亿美元的年收入。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家制成“世界上最纯净的硅” 量子计算机真的要来了吗?

科学家制成“世界上最纯净的硅” 量子计算机真的要来了吗? (来源:《自然?通讯材料》官网截图)尽管量子计算领域的研究成果往往晦涩难懂,但量子计算机和量子这个概念却在生活中频繁出现(比如名梗:遇事不决量子力学)。那么,量子计算究竟是什么?量子计算机真的可能实现吗?有没有可能用生活中的概念去尝试理解它们?为了让大家对量子计算有一个初步的了解,我们这里尽可能地以通俗化、具象化的语言来跟大家聊聊量子计算的那些三五事儿。量子计算(机)究竟是解决什么问题的?与经典计算不同,量子计算遵循量子力学规律,它是能突破经典算力瓶颈的新型计算模式。量子计算机以量子比特为基本运算单元,所谓的量子比特,是与经典比特作为区分。量子计算的发展历程(来源:国际商业机器公司 IBM)以上句子看起来很难理解,我们这里逐句拆解进行讲述。量子计算,看到对于这种冠有“量子”title 的名词,我们很难不将其与量子力学联系起来。自然而然,这种基于量子力学原理的计算方式与传统的经典计算有着本质的不同。具体来说,在经典计算中,信息是通过二进制数字(bits)来表示的,这种二进制数字或为 0 或为 1,类似一个只有开和关两个状态的“开关”。然而,量子计算打破了这一传统,信息是通过另一种方式即量子比特(qubits)来表示的,这种量子比特可以同时处于 0 和 1 的状态,也就是一种叠加态(这里可以参考薛定谔老先生那只既死又活的神奇猫咪)。除此之外,量子比特之间还可以存在某种特殊的关联,称为量子纠缠,这更类似一个可以处于多个状态的“开关旋钮”。经典信息(左)与量子信息(右)(来源:本源量子)凭借其独特的特性,量子计算机便能够利用量子比特进行计算,并且计算能力可以实现指数级爆炸式增长(这是因为 r 个量子比特可以承载 2r 个状态的叠加态,从而在每次计算中实现 2r 倍的计算量。相比之下,经典计算机需要 2r 个经典比特才能实现同样的算力)。因此量子比特在计算某些特定数学问题方面更胜一筹,这就意味着量子计算机可以纵横并重塑各个领域,突破目前阻碍任何涉及量子力学的极限。量子计算机是否可以实现?要想实现量子计算,目前主流的技术路线包括超导、离子阱、半导体、光学、量子拓扑等(其中,超导和离子阱的发展最为迅速)。目前来看,每种技术路线都有其优缺点,尚未有哪种路线能够完全满足实用化的要求。实现量子计算的主要技术路线(来源:《2023 全球量子计算产业发展展望》)量子计算机利用量子比代替传统计算机中的二进制比特,通过量子叠加和量子纠缠实现计算能力的飞跃。量子计算机的概念最早可以追溯到 20 世纪 80 年代,美国物理学家理查德·费曼(Richard Feynman)提出了利用量子系统模拟其他量子系统的想法。1994 年,美国计算机科学家彼得·秀尔(Peter Shor)提出了一个量子算法,能够高效地分解大数,这一算法展示了量子计算机在解决特定问题上具有潜在优势。量子计算机的发展历程 (来源:日经中文网)进入 21 世纪以来,量子计算机的研制已成为全球科技前沿的重大挑战之一。国际商业机器公司(IBM)、谷歌(Google)、英特尔(Intel)等国际知名科技公司以及多所大学都在量子计算领域投入了大量资源。2019 年,美国谷歌公司研制出 53 个量子比特的计算机“悬铃木”,在全球首次实现量子优越性,他们宣称实现了“量子霸权”(量子处理器在特定任务上的表现超过了当时最先进的经典超级计算机)。值得注意的是,中国在量子计算领域也取得了重大进展。2020 年,中国科学技术大学潘建伟院士团队构建了 76 个光子的量子计算原型机“九章”,使中国成为全球第二个实现量子优越性的国家。2021 年,潘建伟院士团队及合作者成功研制了 113 个光子的“九章二号”和 66 比特的“祖冲之二号”量子计算原型机,使中国成为在光学和超导两条技术路线上都实现量子优越性的国家。2023 年,潘建伟院士团队及合作者又成功构建了 255 个光子的量子计算机原型机“九章三号”,在求解特定数学问题时,比目前全球最快的超级计算机快一亿亿倍,比“九章二号”速度提升了一百万倍。可以说,中国在量子计算领域已处于国际领先地位。“超纯硅”具体是怎么回事?硅是一种常见的半导体材料,广泛应用于现代电子技术中。硅基量子计算是量子计算领域的一个重要分支,它利用硅材料的特性来实现量子比特的存储和操作。具体来说,在硅基量子计算中,硅中的电子可以被限制在微小的区域内,形成所谓的量子点。这些量子点可以作为量子比特,用于存储和处理量子信息。硅基量子计算具有许多潜在的优势,包括与现有半导体工艺的兼容性(指的是其绝大多数工艺与传统的半导体工艺兼容,易于和半导体行业对接)、较长的相干时间(指的是量子比特保持其量子特性的时间)以及可扩展性(增加量子比特数目,以实现大规模量子计算),这使得它们更适合于量子计算。硅量子计算登上《自然》封面 。图片来源:《自然》杂志在经典计算抑或是量子计算,都需要具有规则晶体结构的高纯度硅,这是因为非晶硅充满悬空键、氧分子和其他杂质,导致其电性能不佳。然而,从自然界中直接提取的硅存在一个不可忽视的问题,即它包含三种稳定的同位素:硅-28(28Si)、硅-29(29Si)和硅-30(30Si)。其中,硅-29 约占硅的 4.68% ,其原子核携带非零核自旋,会通过偶极相互作用对用于编码量子比特的电子自旋造成干扰。而硅-30 仅占硅的 3.09% ,含量少且电子自旋与核自旋之间的相互作用较大。这使得只有硅-28 被认为是较为理想且纯净的量子计算材料。因此,尽可能减少硅-29 和硅-30 的影响是提升量子计算性能的关键。为了解决这一问题,研究团队利用聚焦离子束技术,从一种名叫 P-NAME 聚焦离子束系统中将一束聚焦且高速的纯硅-28 离子射向硅片,通过植入硅-28 来消耗自然硅中的硅-29 ,从而将硅-29 的比例从 4.68% 最高降至0.00023%(2.3ppm),将-30 的比例从3.09%最高降至0.00006%(0.6ppm)。随后,他们通过两步退火工艺,将植入后的非晶态重新结晶,恢复了硅片的晶体结构。该技术不仅能实现这种极端的硅-28 富集,还避免引入可能干扰量子比特的其他杂质。聚焦离子束同位素富集 Si-28 原理图(来源:《自然·通讯材料》杂志)为了验证植入效果,研究者们采用了纳米级二次离子质谱(NanoSIMS)分析(这是一种能够精确测量样品中不同同位素比例的技术)。通过分析发现,研究者们确认了植入区域中硅-29 的残留浓度显著降低,并且没有引入额外的杂质,如碳(C)和氧(O)等。此外,透射电子显微镜(TEM)分析进一步证实了植入体积的非晶态特性以及退火后的单晶相外延再结晶。这些结果表明,通过聚焦离子束技术可以在硅晶片中实现高纯度的硅-28 富集区域,为量子比特的稳定性提供了保障。这种技术制造的“超纯硅”有望在新材料设计、人工智能、能源存储以及物流制造等领域为整个社会带来革命性变革。该项目的联合导师、墨尔本大学的戴维-贾米森(David Jamieson)教授表示,他们下一步将证明该种材料能够同时维持许多量子比特的量子相干性。“悟源”系列超导量子计算机(来源:本源量子)这项杰出的工作不仅向人们展示了科学界在量子材料制备领域的进步,也为量子计算的实用化和规模化铺平了道路。随着量子技术的不断... PC版: 手机版:

封面图片

研究人员开发出一种利用磁子传输量子信息的新方法

研究人员开发出一种利用磁子传输量子信息的新方法 HZDR 的研究人员成功地在磁盘中产生了类似于波的激发即所谓的磁子来专门操纵碳化硅中原子大小的量子比特。这为量子网络中的信息传输开辟了新的可能性。图片来源:HZDR / Mauricio Bejarano为了满足这一需求,德累斯顿-罗森多夫亥姆霍兹中心(HZDR)的一个研究小组现在推出了一种传输量子信息的新方法:该小组通过利用磁子(磁性材料中的波状激起)的磁场来操纵量子比特(即所谓的量子比特),磁子发生在微观磁盘中。研究人员在《科学进展》(Science Advances)杂志上发表了他们的研究成果。建造可编程的通用量子计算机是当代最具挑战性的工程和科学研究之一。这种计算机的实现为物流、金融和制药等不同行业领域带来了巨大潜力。然而,由于量子计算机技术在存储和处理信息时存在固有的脆弱性,因此阻碍了实用量子计算机的建造。量子信息被编码在量子比特中,而量子比特极易受到环境噪声的影响。微小的热波动(几分之一度)就可能完全破坏计算。这促使研究人员将量子计算机的功能分布在不同的独立构件中,以努力降低出错率,并利用这些构件的互补优势。"然而,这就带来了一个问题,即如何在模块之间传输量子信息,使信息不会丢失,"HZDR 研究员、该刊物第一作者毛里西奥-贝哈拉诺(Mauricio Bejarano)说。"我们的研究正是在这个特定的利基上,在不同的量子模块之间传输通信。"目前,传输量子信息和寻址量子比特的既定方法是通过微波天线。这是Google和 IBM 在其超导芯片中使用的方法,也是在这场量子竞赛中处于领先地位的技术平台。"而我们则是通过磁子来寻址量子比特。磁子可被视为穿过磁性材料的磁激发波。这样做的好处是,磁子的波长在微米范围内,比传统微波技术的厘米波短得多。因此,磁子的微波足迹在芯片中花费的空间更少。HZDR 小组研究了磁子与碳化硅晶体结构中硅原子空位形成的量子比特的相互作用,碳化硅是一种常用于大功率电子器件的材料。这类量子比特通常被称为自旋量子比特,因为量子信息是由空位的自旋状态编码的。但是,如何利用磁子来控制这类量子比特呢?"通常情况下,磁子是通过微波天线产生的。"贝哈拉诺解释说:"这就带来了一个问题,即很难将来自天线的微波驱动与来自磁子的微波驱动分离开来。"为了将微波从磁子中分离出来,HZDR 团队利用了一种在镍铁合金微观磁盘中可以观察到的奇特磁现象。"由于非线性过程,磁盘内的一些磁子具有比天线驱动频率低得多的频率。我们只用这些频率较低的磁子来操纵量子比特"。研究小组强调,他们还没有进行任何量子计算。不过,他们表明,完全用磁子处理量子比特从根本上是可行的。"迄今为止,量子工程界还没有意识到磁子可以用来控制量子比特,"Schultheiß强调说。"但我们的实验证明,这些磁波确实可以派上用场"。为了进一步发展他们的方法,研究小组已经在为未来的计划做准备:他们想尝试控制几个间距很近的单个量子比特,让磁子介导它们的纠缠过程这是进行量子计算的先决条件。他们的设想是,从长远来看,磁子可以被直接电流激发,其精确度可以达到在量子比特阵列中专门针对单个量子比特。这样就可以将磁子用作可编程量子总线,以极其有效的方式寻址量子比特。虽然未来还有大量工作要做,但该研究小组的研究强调,将磁子系统与量子技术相结合,可以为未来开发实用量子计算机提供有益的启示。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人