突破性进展可将养殖肉类的生产成本最多降低90%

突破性进展可将养殖肉类的生产成本最多降低90% 由斯特恩家族工程学教授大卫-卡普兰(David Kaplan)领导的塔夫茨大学细胞农业中心(Tufts University Center for Cellular Agriculture,TUCCA)现在就实现了这样的飞跃,研究人员创造出了能产生自身生长因子的牛(牛肉)肌肉细胞,这一步可以大大降低生产成本。生长因子,无论是用于实验室实验还是培养肉类,都会与细胞表面的受体结合,为细胞生长和分化成不同类型的成熟细胞提供信号。在这项发表在《细胞报告可持续性》(Cell ReportsSustainability)杂志上的研究中,研究人员改造了干细胞,使其产生自身的成纤维细胞生长因子(FGF),从而引发骨骼肌细胞的生长,也就是人们在牛排或汉堡包中发现的那种细胞。"FGF 并不完全是一种营养物质,"时任该项目的首席研究员、现任塔夫茨细胞农业商业化实验室科学主任的安德鲁-斯托特(Andrew Stout)说。他说:"它更像是一种指令,让细胞以某种方式行事。我们所做的就是让牛肌肉干细胞产生这些生长因子,并开启信号通路。"降低成本与研究进展在此之前,生长因子必须添加到周围的液体或培养基中。生长因子由重组蛋白制成,由工业供应商出售,占培养肉类生产成本的大部分(高达或超过 90%)。由于生长因子在细胞培养基中的存活时间不长,因此每隔几天就要补充一次。这就限制了向消费者提供廉价产品的能力。从生长培养基中剔除这种成分可以节省大量成本。肉用牛肌肉细胞可自行制造生长因子,从而从液体生长培养基中去除一种昂贵的成分。资料来源:塔夫茨大学阿隆索-尼科尔斯斯塔特正在塔夫茨大学细胞农业商业化实验室领导几个研究项目,该实验室是一个技术孵化空间,旨在将大学的创新成果发展到可以在商业环境中进行工业规模应用的程度。斯塔特说:"虽然我们大幅降低了培养基的成本,但仍需要进行一些优化,才能使其适用于工业生产,工程细胞的生长速度较慢,但我认为我们可以克服这个问题。策略可能包括改变细胞中 FGF 的表达水平和时间,或改变其他细胞生长途径。在这种策略中,我们不是向细胞中添加外来基因,只是编辑和表达已经存在的基因,观察它们是否能改善肌肉细胞的生长,从而提高肉类产量。这种方法还能简化最终食品的监管审批,因为添加外来基因与编辑本地基因相比,监管更为严格。"这一策略是否适用于其他肉类,如鸡肉、猪肉或鱼肉?斯托特认为可以。斯托特说:"所有肌肉细胞和许多其他类型的细胞通常都依赖于生长因子来生长。他设想这种方法将应用于其他肉类,尽管在不同物种中表达的最佳生长因子可能存在差异。"卡普兰说:"TUCCA 和其他地方正在继续努力改进培植肉技术,包括探索降低生长介质中营养成分成本的方法,以及改善肉的质地、口感和营养成分。尽管成本和供应仍然受到限制,但产品已经获得了美国和全球消费监管部门的批准。我认为,这样的进步将使我们更接近于在未来几年内在本地超市看到价格合理的栽培肉。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

谷蛋白可以模仿真实肉类的质地和成分 助力人造肉生产

谷蛋白可以模仿真实肉类的质地和成分 助力人造肉生产 此外,价格低廉的植物蛋白可以作为这些细胞培养物的基础。最近发表在《ACS 生物材料科学与工程》(ACS Biomaterials Science & Engineering)上的研究结果表明,非过敏性小麦蛋白谷蛋白能成功培养出横纹肌层和扁平脂肪层,将它们结合在一起可产生类似肉类的质地。培养细胞需要一个基质或支架来粘附,以生产实验室培育的肉类。植物蛋白可食用、含量丰富且价格低廉,因此是很有吸引力的支架候选材料。此前的研究表明,由麸质蛋白制成的植物薄膜是培养牛骨骼肌细胞的成功基质。但是,要使这种技术生产出有希望的肉类替代品,肌肉细胞需要形成排列整齐的纤维,与真实组织的质地相似。此外,三维结构中还需要加入脂肪,以复制传统肉制品的成分。麸质蛋白是麸质中的一种蛋白质,患有乳糜泻或对麸质蛋白敏感的人通常不会对这种蛋白质产生反应,为了利用麸质蛋白的这一优势,姚雅、约翰-袁、李春梅、大卫-卡普兰及其同事希望用它来开发基于植物的薄膜,以培育有质感的肌肉细胞和脂肪层。研究人员从小麦麸质中分离出谷蛋白,并形成了平面和脊状图案的薄膜。然后,他们将发育成骨骼肌的小鼠细胞沉积在蛋白质基底上,并将细胞覆盖的薄膜培养两周。细胞在平膜和脊膜上生长和增殖。不出所料,与在明胶制成的对照薄膜上生长的细胞相比,谷蛋白薄膜的性能要差一些,但这也足够了。研究人员说,还需要进一步改进细胞附着在植物基薄膜上的方式,以接近在动物源生物材料上的生长情况。在培养的第二周,图案化薄膜上的细胞形成了长长的平行束,再现了动物肌肉的纤维结构。通过在植物蛋白基底中加入脊,培养的肌肉细胞以模仿动物肌肉纤维排列的模式生长。来源:改编自《ACS 生物材料科学与工程》2024 期,DOI: 10.1021/acsbiomaterials.3c01500在另一项试验中,将产生脂肪组织的小鼠细胞沉积在平整的谷蛋白薄膜上。在培养期间,随着细胞的增殖和分化,它们产生了可见的脂质和胶原蛋白沉积。附着在可食用谷蛋白薄膜上的培养肉和脂肪层可以堆叠起来,形成类似肉类的三维替代蛋白质。研究人员说,由于谷蛋白材料基底支持纹理动物肌肉和脂肪层的生长,因此它可用于制造更逼真的培养肉制品。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

突破性研究利用地质工具检测癌症的独特原子特征

突破性研究利用地质工具检测癌症的独特原子特征 由科罗拉多大学博尔德分校地球化学家阿什利-马洛尼(Ashley Maloney)领导的研究小组将于本周在《美国国家科学院院刊》(PNAS)上发表其研究成果。地质科学系副研究员马洛尼说:"这项研究为医学增添了一个全新的层面,让我们有机会在原子水平上观察癌症。"她解释说,在自然界中,氢主要有两种,即同位素。一些氢原子(称为氘)稍重,而另一些氢原子(通常只称为氢)稍轻。在地球上,氢原子的数量比氘原子的数量多出约 6420 比 1。几十年来,许多领域的科学家利用这些原子的自然分布来揭示地球历史的线索。例如,气候科学家通过研究南极洲冰层中的氢原子来推断地球在几十万年前的冷热程度。在这项新研究中,马洛尼和她的同事想知道,这些微小的原子能否为复杂生物体的生活提供一些线索呢?为了找出答案,研究小组在实验室中培养了酵母和小鼠肝细胞,然后分析了它们的氢原子。研究小组发现,生长速度非常快的细胞(如癌细胞)所含的氢原子和氘原子的比例大不相同。这就好比癌症在犯罪现场的门把手上留下了指纹。这项研究仍处于早期阶段,研究小组还不确定这种信号会不会在真正的癌症患者体内出现。但这项研究的共同作者、地质科学助理教授塞巴斯蒂安-科普夫(Sebastian Kopf)说,这种信号的潜力可能很大。科普夫说:"如果能在早期发现癌症,病患的生存几率就会大大提高。如果这种同位素信号足够强,就可以通过血液化验之类的方法检测到它,那就会给出一个重要的提示,告诉你有什么不对劲。"这项研究围绕一个多年来一直吸引着癌症研究人员的概念展开:新陈代谢。在正常情况下,酵母和动物等生物的细胞通过一种叫做呼吸的过程产生能量,在这个过程中,它们吸收氧气,释放二氧化碳。但这并不是获得高糖分的唯一途径。例如,面包酵母(Saccharomyces cerevisiae)的菌落可以通过发酵产生能量,在发酵过程中,生物体在没有氧气的帮助下分解糖分并产生酒精。这也是酿造啤酒的过程。科普夫说:"在人体中,如果运动员的运动量超过了有氧极限,他们的肌肉也会开始发酵,而这并不使用氧气。这能让你快速增强能量"。事实证明,许多癌细胞也通过类似的策略来令其加速生长。长期以来,科学家们一直在寻找更多的方法来追踪癌细胞中的这些代谢变化。作为普林斯顿大学哈里-赫斯博士后研究员领导这项新研究的马洛尼和她的导师张新宁提出了一个想法:追踪氢。如今,马洛尼管理着科罗拉多大学博尔德分校的地球系统稳定同位素实验室,该实验室是校内 20 多个核心设施之一。作为一名研究生,她探索了热带岛屿藻类中的氢原子。她目前的工作灵感来自一个不太可能的来源:她的父亲,一位皮肤科医生。马洛尼说:"他经常从人们身上提取皮肤癌细胞。我想知道这些细胞的新陈代谢与生长在它们旁边的细胞有什么不同。"要理解这个问题,首先要知道氢是如何进入细胞的。在某些情况下,这些原子来自一种难以发音但却至关重要的酶,即烟酰胺腺嘌呤二核苷酸磷酸酯(NADPH)。NADPH 在细胞中发挥着许多作用,其中包括收集氢原子,然后在制造脂肪酸的过程中将氢原子传递给其他分子,脂肪酸是生命的重要组成部分。然而,NADPH 并不总是从同一个氢池中汲取氢气。由张新宁领导并以细菌为重点的先前研究表明,根据细胞中其他酶的工作情况,NADPH 有时可能更多或更少地使用不同的氢同位素。这就提出了一个问题:如果癌症重塑了细胞的新陈代谢,那么它是否也会改变 NADPH 获取氢的方式,最终改变细胞的原子构成?为了找出答案,研究人员在普林斯顿大学和科罗拉多大学博尔德分校的实验室里设置了装满蓬勃生长的酵母菌群的罐子。另外,普林斯顿大学的生物学家用健康和癌变的小鼠肝细胞菌落进行了一项实验。然后,研究人员从细胞中提取脂肪酸,并使用一种名为质谱仪的仪器来确定其中氢原子的比例。结果显示,与癌细胞相似的发酵酵母细胞所含的氘原子平均比正常酵母细胞少大约50%,这是一个惊人的变化。癌细胞也表现出类似的氘短缺现象,但并不严重。张是这项研究的资深作者,也是普林斯顿大学地球科学助理教授,她希望研究结果有朝一日能帮助像她一样的家庭。"不幸的是,癌症和其他疾病是许多人生活中的一大主题。看到阿什利的数据是一个特殊而深刻的时刻,"张说。"这意味着一种用于追踪地球健康的工具也可能被用于追踪生命体的健康和疾病,希望有一天能用于人类。我生长在一个饱受癌症困扰的家庭,我希望看到这一领域不断扩大。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

美光计划部署纳米印刷技术,降低 DRAM 芯片生产成本

美光计划部署纳米印刷技术,降低 DRAM 芯片生产成本 美光公司表示由于光学系统本身性质,这些 DRAM 层的图案很难用光学光刻技术进行印刷,而纳米打印方式可以用更精细的方式打印出来,且鉴于纳米印刷技术应用成本是沉浸式光刻技术的五分之一,因此是非常不错的解决方案。

封面图片

LG 新能源计划 2028 年电池技术取得突破 可降低 30% 生产成本

LG 新能源计划 2028 年电池技术取得突破 可降低 30% 生产成本 LG 新能源公司 (LG Energy Solution Ltd.) 计划到 2028 年实现干法涂层技术的商业化,该技术旨在取代制造阴阳电极(电动汽车电池的关键部件)的能源密集型湿法工艺,可将生产成本降低 30%。目前,特斯拉、三星 SDI 等公司均在研究该技术。

封面图片

DNA诱饵在突破性疫苗方法中战胜病毒

DNA诱饵在突破性疫苗方法中战胜病毒 这种疫苗已在小鼠身上进行了试验,它由一个 DNA 支架组成,支架上有许多病毒抗原的拷贝。这种疫苗被称为微粒疫苗,模仿病毒的结构。以前大多数微粒疫苗的研究工作都依赖于蛋白质支架,但这些疫苗中使用的蛋白质往往会产生不必要的免疫反应,从而分散免疫系统对目标的注意力。在小鼠研究中,研究人员发现 DNA 支架不会诱发免疫反应,从而使免疫系统能够将抗体反应集中在目标抗原上。麻省理工学院生物工程学教授马克-巴特(Mark Bathe)说:"我们在这项工作中发现,DNA 不会诱发抗体,以免分散对相关蛋白质的注意力。可以想象的是, B 细胞和免疫系统正在接受目标抗原的全面训练,而这正是你想要的让免疫系统激光聚焦于感兴趣的抗原。"研究人员说,这种能强烈刺激 B 细胞(产生抗体的细胞)的方法能让人们更容易开发出针对艾滋病、流感以及 SARS-CoV-2 等难以针对的病毒的疫苗。与受到其它类型疫苗刺激的 T 细胞不同,这些 B 细胞可以持续数十年,提供长期保护。哈佛大学医学院副教授、拉贡研究所首席研究员丹尼尔-凌伍德说:"我们有兴趣探索是否能让免疫系统产生更高水平的免疫力,以抵御流感、艾滋病毒和SARS-CoV-2等传统疫苗方法所抵御的病原体。这种将针对目标抗原的反应与平台本身脱钩的想法是一种潜在的强大免疫学技巧,现在我们可以利用它来帮助这些免疫学靶向决策朝着更有针对性的方向发展"。Bathe、Lingwood和哈佛大学医学院副教授、拉贡研究所首席研究员亚伦-施密特(Aaron Schmidt)是这篇论文的资深作者,论文今天(1月30日)发表在《自然-通讯》(Nature Communications)杂志上。论文的主要作者包括麻省理工学院前博士后艾克-克里斯蒂安-瓦姆霍夫、拉贡研究所博士后拉兰斯-隆萨、哈佛大学前研究生贾里德-费尔德曼、麻省理工学院研究生格兰特-克纳普和哈佛大学前研究生布莱克-豪瑟。微粒疫苗通常由一种蛋白质纳米粒子组成,其结构与病毒相似,可携带许多病毒抗原拷贝。这种高密度的抗原能产生比传统疫苗更强的免疫反应,因为人体认为它与真正的病毒相似。目前已开发出针对乙型肝炎和人类乳头瘤病毒等少数病原体的微粒疫苗,而针对 SARS-CoV-2 的微粒疫苗也已获准在韩国使用。这些疫苗尤其擅长激活 B 细胞,使其产生针对疫苗抗原的特异性抗体。Bathe说:"免疫学领域的许多人都对微粒疫苗非常感兴趣,因为它们能产生强大的体液免疫,也就是基于抗体的免疫,它有别于基于T细胞的免疫,而mRNA疫苗似乎能更强烈地激发T细胞免疫。"不过,这种疫苗的一个潜在缺点是,用于支架的蛋白质通常会刺激人体产生针对支架的抗体。巴特说,这会分散免疫系统的注意力,使其无法如愿启动强有力的反应。他说:"中和 SARS-CoV-2 病毒需要一种疫苗以产生针对病毒尖峰蛋白受体结合域部分的抗体。当在基于蛋白质的微粒上显示这种抗体时,免疫系统不仅能识别受体结合域蛋白质,还能识别与试图引起的免疫反应无关的所有其他蛋白质。"另一个潜在的缺点是,如果同一个人接种了不止一种由相同蛋白支架携带的疫苗,例如接种了 SARS-CoV-2 疫苗,然后又接种了流感疫苗,那么他们的免疫系统很可能会立即对蛋白支架产生反应,因为他们已经做好了对蛋白支架产生反应的准备。这可能会削弱对第二种疫苗所含抗原的免疫反应。Bathe说:"如果想应用这种基于蛋白质的微粒来免疫不同的病毒(如流感),那么免疫系统就会沉迷于它已经看到并产生免疫反应的底层蛋白质支架。这可能会降低机体对实际抗原的抗体反应质量。"作为一种替代方法,Bathe 的实验室一直在开发使用 DNA 折纸制作的支架,这种方法可以精确控制合成 DNA 的结构,并允许研究人员在特定位置附着各种分子,如病毒抗原。在2020 年的一项研究中,巴特和麻省理工学院生物工程及材料科学与工程教授达雷尔-欧文(Darrell Irvine)发现,携带 30 个艾滋病毒抗原拷贝的 DNA 支架可以在实验室培育的 B 细胞中产生强烈的抗体反应。这种结构是激活 B 细胞的最佳选择,因为它与纳米级病毒的结构非常相似,而纳米级病毒的表面会显示许多病毒蛋白的拷贝。Lingwood说:"这种方法建立在B细胞抗原识别的基本原理基础之上,即如果对抗原进行阵列显示,就能促进B细胞的反应,提高抗体输出的数量和质量。"在新的研究中,研究人员换用了由 SARS-CoV-2 原始菌株中尖峰蛋白的受体结合蛋白组成的抗原。在给小鼠注射疫苗时,他们发现小鼠对尖峰蛋白产生了高水平的抗体,但对DNA支架却没有产生任何抗体。与此相反,以一种名为铁蛋白的支架蛋白为基础、涂有 SARS-CoV-2 抗原的疫苗产生了许多针对铁蛋白和 SARS-CoV-2 的抗体。"DNA 纳米粒子本身没有免疫原性,"Lingwood 说。"使用基于蛋白质的平台会对平台和感兴趣的抗原产生同样高滴度的抗体反应,这会使重复使用该平台变得复杂,因为身体会对它产生高亲和力的免疫记忆"。减少这些脱靶效应还有助于科学家们实现开发一种疫苗的目标,这种疫苗可以诱导针对任何变异的 SARS-CoV-2 甚至所有冠状病毒的广泛中和抗体,而冠状病毒是包括 SARS-CoV-2 以及导致 SARS 和 MERS 的病毒在内的病毒亚属。为此,研究人员正在探索一种附有多种不同病毒抗原的 DNA 支架能否诱导出针对 SARS-CoV-2 和相关病毒的广泛中和抗体。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家在大米孔隙中培育牛肉细胞 制造富含蛋白质的新型太空食品

科学家在大米孔隙中培育牛肉细胞 制造富含蛋白质的新型太空食品 我们目前的耕作方式并不是特别可持续,而且随着数十亿人口的增加,预计对环境的影响只会越来越大。因此,未来的食物可能会与我们习惯的食物大相径庭,无论是在实验室里种植肉类、吃昆虫来获取蛋白质,还是激发微生物来生产营养粉末。现在,韩国的科学家们创造出了一种可能成为未来主食的新型食品牛肉-大米杂交食品。其原理类似于在实验室中培育肉类细胞,只不过这次他们是在米粒的孔隙中培育肉类细胞。这种结构为动物细胞提供了一个稳定的支架,而大米中的某些分子则帮助它们茁壮成长。研究人员首先在大米上涂一层鱼明胶,这有助于牛肉细胞的粘附。种上牛肌肉和脂肪干细胞后,大米被放置培养9到11天。最终得到的粉红色大米看起来有点恐怖,但完全符合食品安全标准,而且营养相当丰富。研究人员蒸煮了他们的牛肉饭,并进行了一系列食品工业分析,以调查这种非自然的创造。他们发现,与普通米饭相比,牛肉饭的蛋白质含量高出 8%,脂肪含量高出 7%,口感更硬更脆。据报道,含有更多肌肉细胞的牛肉饭闻起来更像牛肉或杏仁,而脂肪含量更高的牛肉饭闻起来更接近奶油、黄油或椰子油。牛肉-大米的环境足迹比传统养殖肉类小得多。研究人员估计,他们的研究成果每 100 克蛋白质释放的二氧化碳应少于 6.27 千克(13.82 磅),而牛肉则为 50 千克(110 磅)。成本也会低得多,牛肉-大米的成本约为每公斤 2.23 美元,而牛肉的成本为 14.88 美元。研究小组表示,牛肉-大米具有营养和环境效益,而且食品安全风险低、易于制造,因此是商业化的理想选择。在此之前,科学家们计划通过改善大米中的条件来提高其营养价值,以帮助牛肉细胞茁壮成长。在此之后,最后的障碍可能只是说服人们愿意吃它但公平地说,未来的许多食品都可以这样做。该研究的第一作者 Sohyeon Park 说:"我们通常从牲畜身上获取所需的蛋白质,但牲畜生产需要消耗大量资源和水,并释放大量温室气体。我没想到细胞在水稻中生长得这么好。现在我看到了这种谷物杂交食品的无限可能。有朝一日,它可以作为饥荒救济粮、军粮,甚至太空食品。"这项研究发表在《物质》杂志上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人