港大研究人员开发出处理速度更快、能耗更低的微波光子芯片

港大研究人员开发出处理速度更快、能耗更低的微波光子芯片 集成微波光子处理芯片效果图。受访者供图集成微波光子芯片通过光学元件产生、传输和调控微波信号。但一直以来,集成微波光子系统难以同时实现芯片集成和高保真度、低功耗的超高速模拟信号处理。“低能耗对于人工智能领域有着重大意义。如今,越来越多的人工智能产品问世,产品更新迭代速度加快,人工智能模型所具备的规模越来越大、复杂度越来越高。随之而来的是能量消耗问题日益凸显,因为它不仅会导致产品成本提升,还会带来无法忽视的环境问题。”王骋在接受《中国科学报》采访时说。为了解决这些难题,王骋团队将超快电光转换模块与低损耗、多功能信号处理模块同时放置在一块芯片上,组成集成微波光子系统。而能实现卓越效能的原因是负责集成的薄膜铌酸锂平台。“因为铌酸锂对光子学的重要性堪比微电子学中的硅,所以它又被称为‘光子学之硅’。”王骋说,他在美国哈佛大学攻读博士学位期间就致力于研究集成铌酸锂光子平台。在加入香港城市大学后,其所在研究团队在铌酸锂微波光子学领域持续深耕,力争让微波光子芯片更小巧,具备更高信号保真度与更低延迟性能。“我认为铌酸锂是一种非常有潜力、可实现大规模片上光子集成应用的平台。与其他光学材料相比,它同时具有优异的电光效应、超低的光学损耗,以及大规模、低成本的制造工艺。”论文第一作者、香港城市大学博士生冯寒珂解释说。王骋团队研发的集成铌酸锂微波光子芯片不仅速度比传统电子处理器快1000倍,具有67吉赫兹的超宽处理带宽和极高的计算精确度,而且它的能耗更低。以处理一个250×250像素的图片为例,集成铌酸锂微波光子芯片仅需要3纳焦的能耗就能完成对图片边缘信息的提取,而传统的电子芯片若要执行相同的任务,则需要几百甚至上千纳焦的能耗。对于论文共同第一作者、香港城市大学本科生葛通来说,这次研究的高光时刻,是在进行超高速信号处理测试时,将脉宽小于10皮秒的脉冲信号直接输入到芯片中,示波器上观测到该信号的微分结果的那一刻。“这直接证明了我们的光子处理器可以有效处理如此高速的信号,创造了一个全新的世界纪录。”而集成铌酸锂微波光子芯片将以傲人的优势,进入5G和6G无线通信系统、高分辨率雷达系统,以及图像/视频处理等多种应用场景。下一步,王骋团队将对芯片进行进一步优化和验证,其中关键的技术挑战包括如何进一步提高集成度、实现芯片与控制电路的高效封装、优化设备性能和稳定性等,从而使其真正进入产品化阶段。相关论文信息: (2024-03-01 第1版 要闻) ... PC版: 手机版:

相关推荐

封面图片

光子学技术新突破:科学家用微型芯片产生高质量微波信号

光子学技术新突破:科学家用微型芯片产生高质量微波信号 盖塔实验室开发的光子集成芯片的高级示意图,该芯片用于全光学光分频(OFD)一种将高频信号转换为低频信号的方法。图片来源:Yun Zhao/哥伦比亚工程学院这种芯片非常小巧,可以装在锋利的铅笔尖上,是迄今为止在集成光子平台上观察到的最低微波噪声。这项成果为高速通信、原子钟和自动驾驶汽车等应用提供了一条通往小尺寸超低噪声微波发生器的光明之路。用于全球导航、无线通信、雷达和精密计时的电子设备需要稳定的微波源作为时钟和信息载体。要提高这些设备的性能,关键在于减少微波中存在的噪声或相位随机波动。"在过去的十年中,一种被称为光分频的技术产生了迄今为止噪音最低的微波信号,"哥伦比亚工程学院应用物理和材料科学大卫-M-里基教授兼电气工程教授亚历山大-盖塔说。"通常情况下,这样的系统需要多个激光器和相对较大的体积来容纳所有元件。"光分频一种将高频信号转换为低频信号的方法是最近产生微波的创新技术,其中的噪声已被大大抑制。然而,由于光分频系统占用桌面空间较大,因此无法用于微型传感和通信应用,而这些应用需要更紧凑的微波源,因此光分频系统已被广泛采用。盖塔说:"我们已经实现了一种设备,只需使用单个激光器,就能在面积小至 1 平方毫米的芯片上完全实现光分频。我们首次展示了无需电子设备的光学分频过程,大大简化了设备设计。"量子和非线性光子学:创新的核心盖塔的研究小组专门研究量子和非线性光子学,即激光如何与物质相互作用。研究的重点领域包括非线性纳米光子学、频率梳生成、强超快脉冲相互作用以及光量子态的生成和处理。在目前的研究中,他的研究小组设计并制造了一种片上全光学器件,该器件能产生 16 GHz 的微波信号,其频率噪声是迄今在集成芯片平台上实现的最低频率噪声。该设备使用两个由氮化硅制成的微谐振器,通过光子耦合在一起。单频激光器泵浦两个微谐振器。其中一个用于产生光参量振荡器,将输入波转换成两个输出波一个频率较高,一个频率较低。两个新频率的频率间隔被调整为太赫兹频率。由于振荡器的量子相关性,这种频率差异的噪声可比输入激光波的噪声小数千倍。第二个微谐振器经调整后可产生具有微波间隔的光频梳。然后,振荡器发出的少量光被耦合到梳状频率发生器,从而使微波梳状频率与太赫兹振荡器同步,自动实现光分频。潜在影响和未来应用盖塔研究小组的工作代表了一种在小型、坚固和高度便携的封装内进行光学分频的简单而有效的方法。这些研究成果为芯片级设备打开了大门,这些设备能够产生稳定、纯净的微波信号,可与进行精密测量的实验室产生的信号相媲美。他说:"最终,这种全光分频将带来未来电信设备的新设计。它还能提高用于自动驾驶汽车的微波雷达的精度。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

科学家开发出效率高达92%的铌酸锂钻石芯片

科学家开发出效率高达92%的铌酸锂钻石芯片 继最近的一次原理验证之后,研究人员又将一种新的化合物组合加入量子材料的行列。在《ACS Photonics》上发表的一项研究中,研究人员将两种纳米级结构(一种由金刚石制成,另一种由铌酸锂制成)组合在一块芯片上。然后,他们将光线从金刚石发送到铌酸锂,并测量了成功穿过的光线比例。这个分数越大,说明材料的耦合效率越高,这种配对作为量子设备的组件也就越有前景。这项研究得到了美国能源部阿贡国家实验室领导的美国能源部国家量子信息科学研究中心 Q-NEXT 的部分支持。斯坦福大学的 Amir Safavi-Naeini 和 Jelena Vuckovic 领导了这项研究。论文合著者、斯坦福大学博士生霍普-李(Hope Lee)说:"这个装置的效率达到92%,这是一个令人兴奋的结果,它显示了该平台的优势。"(霍普-李是斯坦福大学的一名博士生,在芝加哥大学读本科时曾与Q-NEXT主任大卫-奥沙隆(David Awschalom)共事)量子技术利用物质在分子尺度上的特殊功能来处理信息。量子计算机、网络和传感器有望在医疗、通信和物流等领域对我们的生活产生巨大影响。量子信息以称为量子比特的数据包形式传输,而量子比特可以有多种形式。在研究团队的新平台中,量子比特以光粒子的形式传输信息。可靠的量子比特对于量子通信网络等技术至关重要。与传统网络一样,量子网络中的信息从一个节点传输到另一个节点。静态量子比特存储节点内的信息;飞行量子比特在节点之间传输信息。研究团队的新芯片将成为固定量子比特的基础。静态量子比特越强大,量子网络就越可靠,网络覆盖的距离也就越远。跨越一个大陆的量子网络指日可待。长期以来,钻石一直被誉为量子比特的理想之所。首先,金刚石的分子结构很容易操纵,可以容纳固定的量子比特。其次,金刚石寄存的量子比特可以在相对较长的时间内保持信息,这意味着有更多的时间来进行计算。此外,使用金刚石寄存的量子比特进行的计算具有很高的精确度。在该小组的研究中,金刚石的搭档铌酸锂是处理量子信息的另一个明星。铌酸锂的特殊性能使科学家们可以改变穿过它的光的频率,从而实现多功能性。例如,研究人员可以对铌酸锂施加电场或机械应变,以调整它如何引导光线。此外,还可以改变铌酸锂晶体结构的方向。定期翻转晶体结构也是塑造光线通过材料的另一种方法。论文共同作者、斯坦福大学博士生杰森-赫尔曼(Jason Herrmann)说:"我们可以利用铌酸锂的这些特性来转换和改变来自钻石的光线,以对不同实验有用的方式对其进行调制。例如,基本上可以把光转换成现有通信基础设施使用的频率。因此,铌酸锂的这些特性确实非常有益。"传统上,金刚石托管量子比特发出的光被导入光导纤维或自由空间。在这两种情况下,实验装置都很笨重。光导纤维又长又笨重。而将量子比特传输到自由空间则需要笨重的设备。当来自钻石量子比特的光被导入铌酸锂时,所有这些设备都将消失。几乎所有的元件都可以放置在一个微小的芯片上。李说:"将尽可能多的设备和功能集成到单个芯片上有一个好处。它更稳定。而且还能真正实现设置的小型化。"不仅如此,由于这两个装置是通过一根细如发丝的灯丝连接在一起的其宽度仅为头发丝的 1/100量子光被挤压到通向铌酸锂的狭窄通道中,从而增加了光与材料之间的相互作用,使操纵光的特性变得更加容易。Herrmann说:"当所有不同的光粒子在如此小的体积内相互作用时,你就能在转换过程中获得更高的效率。与使用纤维或自由空间的设置相比,能够在集成平台中做到这一点将有望产生更高的效率。"开发该平台所面临的挑战之一是如何操纵仅 300 纳米宽的钻石与铌酸锂对齐。李说:"我们不得不用细小的针戳钻石,将它移来移去,直到它在盘子上的位置明显看起来是正确的。这几乎就像是用小筷子在戳它"。测量传输的光线是另一个艰苦的过程。Herrmann 说:"我们必须真正确保我们考虑到了所有光线传输或损耗的地方,这样才能说'这是从钻石到铌酸锂的传输量'。校准测量需要反复进行,以确保我们做得正确"。研究小组正在计划进一步的实验,利用金刚石和铌酸锂单独或共同提供的量子信息优势。他们的最新成功只是一个里程碑,他们希望在这两种材料的基础上开发出多种多样的设备。通过将这两种材料平台结合在一起,并将光线从一种材料引导到另一种材料,研究表明,与其只使用一种材料,确实可以同时拥有两种材料的优点。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新型合成材料能使设备体积更小、信号强度要求更低、耗电量更少

新型合成材料能使设备体积更小、信号强度要求更低、耗电量更少 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 桑迪亚国家实验室的 Matt Eichenfield 团队使用多种微波频率来表征他们在硅晶片上制造的非线性声子混合装置。图片来源:Bret Latter/桑迪亚国家实验室这些进步的关键在于专家们所说的声子学,它与光子学类似。两者都利用了类似的物理定律,为技术进步提供了新的途径。光子学利用的是光子,而声子学利用的也是声子,声子是一种物理粒子,通过材料传递机械振动,类似于声音,但频率太高,听不到。亚利桑那大学怀恩特光学科学学院和桑迪亚国家实验室的研究人员在发表于《自然-材料》(Nature Materials)上的一篇论文中报告说,他们在基于声子学的实际应用方面取得了重大进展。通过将高度专业化的半导体材料和压电材料结合在一起,研究人员能够在声子之间产生巨大的非线性相互作用。结合之前利用相同材料展示声子放大器的创新成果,这为智能手机或其他数据发射器等无线设备变得更小、更高效、更强大提供了可能。这项研究的资深作者马特-艾肯菲尔德(Matt Eichenfield)说:"大多数人可能会惊讶地发现,他们的手机内有大约 30 个滤波器,其唯一的工作就是将无线电波转换成声波,然后再转换回来。"他说,这些压电滤波器是所谓前端处理器的一部分,由特殊的微芯片制成,智能手机每次接收或发送数据时,都需要多次转换声波和电子波。艾申菲尔德说,由于这些滤波器不能像前端处理器中其他至关重要的芯片那样由硅等相同材料制成,因此设备的物理尺寸要比需要的大得多,而且在无线电波和声波之间来回转换时会产生损耗,这些损耗累积起来会降低设备的性能。左为马特-艾肯菲尔德,右为丽莎-哈克特,图为 COVID-19 大流行期间他们在桑迪亚国家实验室的实验室。在先前研究的基础上,该团队现在已经生产出了声学混频器,完成了在单芯片上制造射频前端所需的元件清单。图片来源:Bret Latter/桑迪亚国家实验室"通常情况下,声子的行为是完全线性的,这意味着它们不会相互影响。这有点像一束激光穿过另一束激光,它们只是互相穿过。"Eichenfield 说,非线性声子学是指在特殊材料中,当声子能够并确实相互影响时会发生的现象。在论文中,研究人员展示了他所说的"巨型声子非线性"。研究小组生产的合成材料使声子之间的相互作用比任何传统材料都要强烈得多。他说:"用激光指示器来比喻,这就好比当你打开第二根激光指示器时,第一根激光指示器的光子频率发生了变化。因此,你会看到第一支激光笔的光束改变了颜色。"研究人员利用新型声子材料证明,一束声子实际上可以改变另一束声子的频率。更重要的是,他们证明了声子的操纵方式,而在此之前,只有基于晶体管的电子器件才能实现这种操纵方式。该研究小组一直在努力实现这样一个目标,即利用声波技术而不是基于晶体管的电子技术,在单个芯片上制造出射频信号处理器所需的所有元件,并与标准微处理器制造工艺兼容,最新发表的论文证明了这一点。此前,研究人员已成功制造出包括放大器、开关等在内的声学元件。通过最新出版物中描述的声学混频器,他们完成了最后一块拼图。Eichenfield说:"现在,你可以指着射频前端处理器图中的每个元件说:'是的,可以用声波在一个芯片上制造出所有这些元件'。我们已经准备好在声学领域制造整个设备。"在单个芯片上集成制造射频前端所需的所有元件,可使手机和其他无线通信小工具等设备的体积缩小 100 倍之多。研究小组将高度专业化的材料结合到微电子尺寸的设备中,并通过这些设备发送声波,从而完成了原理验证。具体来说,他们在硅晶片上薄薄地涂上一层铌酸锂一种广泛应用于压电设备和手机的合成材料然后再加上一层超薄(厚度不到 100 个原子)的砷化镓铟半导体。论文第一作者、桑迪亚工程师丽莎-哈克特(Lisa Hackett)说:"当我们以正确的方式将这些材料结合在一起时,我们就能够通过实验获得新的声子非线性机制。这意味着我们有了发明比以往任何时候都更小的发送和接收无线电波的高性能技术的出路。"在这种设置中,通过系统的声波在穿过材料时会出现非线性行为。这种效应可用于改变频率和编码信息。长期以来,非线性效应一直是光子学的主干,被用来将不可见的激光变成可见的激光指示器,但在声学中利用非线性效应却受到技术和材料的限制。例如,尽管铌酸锂是目前已知的非线性声子材料之一,但由于其本身的非线性非常弱,因此阻碍了其在技术应用中的实用性。通过添加砷化铟镓半导体,Eichenfield 的研究小组创造了一种环境,在这种环境中,声波穿过材料时会影响砷化铟镓半导体薄膜中的电荷分布,导致声波以可控的特定方式混合,从而为该系统的各种应用打开了大门。Eichenfield 说:"使用这些材料可以产生的有效非线性是以前的数百甚至数千倍,这太疯狂了。如果能为非线性光学做同样的事情,那将彻底改变这个领域。"作者说,由于物理尺寸是目前最先进的射频处理硬件的基本限制之一,这项新技术可以为比目前同类产品功能更强的电子设备打开大门。几乎不占空间、信号覆盖范围更广、电池寿命更长的通信设备即将问世。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员展示了"挤压"红外光的新方法

研究人员展示了"挤压"红外光的新方法 研究人员已经证明,一种特定类型的氧化物膜可以比块体晶体更有效地限制红外光,这对下一代红外成像技术具有重要意义。这些薄膜膜在压缩波长的同时保持所需的红外频率,从而实现更高的图像分辨率。研究人员利用过渡金属钙钛矿材料和先进的同步加速器近场光谱,表明这些膜中的声子极化子可以将红外光限制在其波长的 10% 以内。这一突破可能带来光子学、传感器和热管理领域的新应用,并可能轻松集成到各种设备中。图片来源:北卡罗来纳州立大学 Yin Liu“薄膜膜保持了所需的红外频率,但压缩了波长,使成像设备能够以更高的分辨率捕捉图像,”该论文的共同通讯作者、北卡罗来纳州立大学材料科学与工程助理教授 Yin Liu 说道。“我们已经证明,我们可以将红外光限制在其波长的 10% 以内,同时保持其频率 - 这意味着波长循环所需的时间相同,但波峰之间的距离要近得多。块状晶体技术将红外光限制在其波长的 97% 左右。”“这种行为以前只是理论上的,但我们能够通过我们制备薄膜膜的方式和我们对同步加速器近场光谱的新用途首次在实验中证明它,”该论文的共同主要作者、北卡罗来纳州立大学材料科学与工程助理教授 Ruijuan Xu 说道。为了这项工作,研究人员使用了过渡金属钙钛矿材料。具体来说,研究人员使用脉冲激光沉积在真空室中生长出 100 纳米厚的钛酸锶 (SrTiO3) 晶体膜。这种薄膜的晶体结构质量很高,这意味着它几乎没有缺陷。然后将这些薄膜从生长它们的基底上取下,并放置在硅基底的氧化硅表面上。研究人员随后利用劳伦斯伯克利国家实验室先进光源的技术,在钛酸锶薄膜暴露于红外光时对其进行同步近场光谱分析。这使研究人员能够在纳米级捕捉到材料与红外光的相互作用。要了解研究人员学到了什么,我们需要讨论声子、光子和极化子。声子和光子都是能量在材料之间传播的方式。声子本质上是由原子振动引起的能量波。光子本质上是电磁能的波。可以把声子看作是声能的单位,而光子是光能的单位。声子极化子是准粒子,当红外光子与“光学”声子(即可以发射或吸收光的声子)耦合时就会产生。“理论论文提出了这样一种观点,即过渡金属钙钛矿氧化物膜将允许声子极化子限制红外光,”刘说。“而我们的工作现在表明,声子极化子确实限制了光子,并且还阻止光子超出材料表面。这项工作建立了一类用于控制红外波长光的新型光学材料,在光子学、传感器和热管理方面具有潜在的应用,想象一下,能够设计出使用这些材料通过将热量转化为红外光来散热的计算机芯片。”“这项工作也令人兴奋,因为我们展示的制造这些材料的技术意味着薄膜可以很容易地与各种各样的基底集成,”徐说。“这应该可以轻松地将这些材料整合到许多不同类型的设备中。”编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员开发出一种利用磁子传输量子信息的新方法

研究人员开发出一种利用磁子传输量子信息的新方法 HZDR 的研究人员成功地在磁盘中产生了类似于波的激发即所谓的磁子来专门操纵碳化硅中原子大小的量子比特。这为量子网络中的信息传输开辟了新的可能性。图片来源:HZDR / Mauricio Bejarano为了满足这一需求,德累斯顿-罗森多夫亥姆霍兹中心(HZDR)的一个研究小组现在推出了一种传输量子信息的新方法:该小组通过利用磁子(磁性材料中的波状激起)的磁场来操纵量子比特(即所谓的量子比特),磁子发生在微观磁盘中。研究人员在《科学进展》(Science Advances)杂志上发表了他们的研究成果。建造可编程的通用量子计算机是当代最具挑战性的工程和科学研究之一。这种计算机的实现为物流、金融和制药等不同行业领域带来了巨大潜力。然而,由于量子计算机技术在存储和处理信息时存在固有的脆弱性,因此阻碍了实用量子计算机的建造。量子信息被编码在量子比特中,而量子比特极易受到环境噪声的影响。微小的热波动(几分之一度)就可能完全破坏计算。这促使研究人员将量子计算机的功能分布在不同的独立构件中,以努力降低出错率,并利用这些构件的互补优势。"然而,这就带来了一个问题,即如何在模块之间传输量子信息,使信息不会丢失,"HZDR 研究员、该刊物第一作者毛里西奥-贝哈拉诺(Mauricio Bejarano)说。"我们的研究正是在这个特定的利基上,在不同的量子模块之间传输通信。"目前,传输量子信息和寻址量子比特的既定方法是通过微波天线。这是Google和 IBM 在其超导芯片中使用的方法,也是在这场量子竞赛中处于领先地位的技术平台。"而我们则是通过磁子来寻址量子比特。磁子可被视为穿过磁性材料的磁激发波。这样做的好处是,磁子的波长在微米范围内,比传统微波技术的厘米波短得多。因此,磁子的微波足迹在芯片中花费的空间更少。HZDR 小组研究了磁子与碳化硅晶体结构中硅原子空位形成的量子比特的相互作用,碳化硅是一种常用于大功率电子器件的材料。这类量子比特通常被称为自旋量子比特,因为量子信息是由空位的自旋状态编码的。但是,如何利用磁子来控制这类量子比特呢?"通常情况下,磁子是通过微波天线产生的。"贝哈拉诺解释说:"这就带来了一个问题,即很难将来自天线的微波驱动与来自磁子的微波驱动分离开来。"为了将微波从磁子中分离出来,HZDR 团队利用了一种在镍铁合金微观磁盘中可以观察到的奇特磁现象。"由于非线性过程,磁盘内的一些磁子具有比天线驱动频率低得多的频率。我们只用这些频率较低的磁子来操纵量子比特"。研究小组强调,他们还没有进行任何量子计算。不过,他们表明,完全用磁子处理量子比特从根本上是可行的。"迄今为止,量子工程界还没有意识到磁子可以用来控制量子比特,"Schultheiß强调说。"但我们的实验证明,这些磁波确实可以派上用场"。为了进一步发展他们的方法,研究小组已经在为未来的计划做准备:他们想尝试控制几个间距很近的单个量子比特,让磁子介导它们的纠缠过程这是进行量子计算的先决条件。他们的设想是,从长远来看,磁子可以被直接电流激发,其精确度可以达到在量子比特阵列中专门针对单个量子比特。这样就可以将磁子用作可编程量子总线,以极其有效的方式寻址量子比特。虽然未来还有大量工作要做,但该研究小组的研究强调,将磁子系统与量子技术相结合,可以为未来开发实用量子计算机提供有益的启示。编译自:ScitechDaily ... PC版: 手机版:

封面图片

加州大学河滨分校研究人员通过软件调整消除瓶颈 将计算机处理速度提升一倍

加州大学河滨分校研究人员通过软件调整消除瓶颈 将计算机处理速度提升一倍 从智能手机和个人电脑到数据中心服务器,大多数现代计算机都包含用于人工智能和机器学习的图形处理器(GPU)和硬件加速器。著名的商业案例包括NVIDIA GPU 上的张量核心(Tensor Cores)、Google云服务器上的张量处理单元(TPU)、苹果 iPhone 上的神经引擎(Neural Engines)以及Google Pixel 手机上的边缘 TPU。这些组件各自处理信息,将信息从一个处理单元转移到下一个处理单元时往往会造成数据流的瓶颈。在一项新的研究中,加州大学河滨分校(UCR)的研究人员展示了一种方法,让现有的不同组件同时运行,从而大大提高处理速度并降低能耗。加州大学洛杉矶分校电气与计算机工程系副教授、该研究的共同第一作者曾宏伟说:"不必增加新的处理器,因为你已经拥有了它们。"研究人员的框架被称为同步异构多线程(SHMT),它摒弃了传统的编程模式,即只能将代码区域专门委托给一种处理器,而让其他资源闲置,不为当前功能做贡献。相反,SHMT 利用了多个组件的多样性或异质性,将计算功能拆分开来,让它们共享。换句话说,这是一种并行处理。比较 (a) 传统异构计算机、(b) 带有软件流水线的传统异构计算机和 (c) SHMT 执行功能的方式 图/Hsu 和 Tseng工作原理您可以跳过这部分内容,但对于计算机科学爱好者来说,下面是有关 SHMT 工作原理的概述(仍然非常基础)。一组虚拟操作(VOPs)允许 CPU 程序将功能"卸载"到虚拟硬件设备上。在程序执行过程中,运行时系统会驱动 SHMT 的虚拟硬件,衡量硬件资源的能力以做出调度决策。SHMT 采用质量感知工作抢占(QAWS)调度策略,不会占用资源,但有助于保持质量控制和工作负载平衡。运行时系统将 VOP 分成一个或多个高级操作 (HLOP),以便同时使用多个硬件资源。然后,SHMT 的运行时系统将这些 HLOP 分配到目标硬件的任务队列中。由于 HLOP 与硬件无关,运行时系统可以根据需要调整任务分配。原型测试和结果为了测试这一概念,研究人员构建了一个系统,该系统采用的芯片和处理能力可以在任何像样的后期型号智能手机中找到,并做了一些调整,这样他们还可以测试该系统在数据中心中的功能。SHMT 原型平台具体来说,他们使用NVIDIA的Jetson Nano模块定制了一个嵌入式系统平台,该模块包含一个四核 ARM Cortex-A57 处理器(CPU)和 128 个 Maxwell 架构 GPU 内核。Google Edge TPU 通过其 M.2 Key E 插槽与系统相连。中央处理器、图形处理器和 TPU 通过板载 PCIe 接口交换数据,PCIe 接口是主板组件(如图形卡、内存和存储设备)的标准化接口。系统的主内存(4 GB 64 位 LPDDR4,1,600 MHz,25.6 GB/s)托管共享数据。Edge TPU 还包含一个 8 MB 的设备内存,并使用 Ubuntu Linux 18.04 作为操作系统。使用基准应用程序对 SHMT 概念进行了测试后发现,采用性能最佳的 QAWS 策略的框架将其发挥得淋漓尽致,与基准方法相比,速度提高了 1.95 倍,能耗显著降低了 51%。采用不同调度策略的 SHMT 速度提升(相对于基准 GPU)这一切意味着什么?研究人员说,这对 SHMT 的影响是巨大的。现有手机、平板电脑、台式机和笔记本电脑上的软件应用程序可以利用这个新的软件库实现一些相当惊人的性能提升。但它也能减少对昂贵的高性能组件的需求,从而带来更便宜、更高效的设备。由于这种方法可以减少能源消耗,进而降低制冷需求,因此可以优化数据中心的两个关键项目,同时还能减少碳排放和用水量。能源消耗和能源延迟产品 图/加州大学河滨分校与往常一样,我们还需要对系统的实施、硬件支持以及哪类应用最受益等方面进行进一步的研究,但有了这些成果,我们相信该团队在吸引资源将其推广开来方面不会遇到什么困难。这项研究在第 56 届 IEEE/ACM 微体系结构国际研讨会MICRO 2023 上发表。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人