研究人员展示了"挤压"红外光的新方法

研究人员展示了"挤压"红外光的新方法 研究人员已经证明,一种特定类型的氧化物膜可以比块体晶体更有效地限制红外光,这对下一代红外成像技术具有重要意义。这些薄膜膜在压缩波长的同时保持所需的红外频率,从而实现更高的图像分辨率。研究人员利用过渡金属钙钛矿材料和先进的同步加速器近场光谱,表明这些膜中的声子极化子可以将红外光限制在其波长的 10% 以内。这一突破可能带来光子学、传感器和热管理领域的新应用,并可能轻松集成到各种设备中。图片来源:北卡罗来纳州立大学 Yin Liu“薄膜膜保持了所需的红外频率,但压缩了波长,使成像设备能够以更高的分辨率捕捉图像,”该论文的共同通讯作者、北卡罗来纳州立大学材料科学与工程助理教授 Yin Liu 说道。“我们已经证明,我们可以将红外光限制在其波长的 10% 以内,同时保持其频率 - 这意味着波长循环所需的时间相同,但波峰之间的距离要近得多。块状晶体技术将红外光限制在其波长的 97% 左右。”“这种行为以前只是理论上的,但我们能够通过我们制备薄膜膜的方式和我们对同步加速器近场光谱的新用途首次在实验中证明它,”该论文的共同主要作者、北卡罗来纳州立大学材料科学与工程助理教授 Ruijuan Xu 说道。为了这项工作,研究人员使用了过渡金属钙钛矿材料。具体来说,研究人员使用脉冲激光沉积在真空室中生长出 100 纳米厚的钛酸锶 (SrTiO3) 晶体膜。这种薄膜的晶体结构质量很高,这意味着它几乎没有缺陷。然后将这些薄膜从生长它们的基底上取下,并放置在硅基底的氧化硅表面上。研究人员随后利用劳伦斯伯克利国家实验室先进光源的技术,在钛酸锶薄膜暴露于红外光时对其进行同步近场光谱分析。这使研究人员能够在纳米级捕捉到材料与红外光的相互作用。要了解研究人员学到了什么,我们需要讨论声子、光子和极化子。声子和光子都是能量在材料之间传播的方式。声子本质上是由原子振动引起的能量波。光子本质上是电磁能的波。可以把声子看作是声能的单位,而光子是光能的单位。声子极化子是准粒子,当红外光子与“光学”声子(即可以发射或吸收光的声子)耦合时就会产生。“理论论文提出了这样一种观点,即过渡金属钙钛矿氧化物膜将允许声子极化子限制红外光,”刘说。“而我们的工作现在表明,声子极化子确实限制了光子,并且还阻止光子超出材料表面。这项工作建立了一类用于控制红外波长光的新型光学材料,在光子学、传感器和热管理方面具有潜在的应用,想象一下,能够设计出使用这些材料通过将热量转化为红外光来散热的计算机芯片。”“这项工作也令人兴奋,因为我们展示的制造这些材料的技术意味着薄膜可以很容易地与各种各样的基底集成,”徐说。“这应该可以轻松地将这些材料整合到许多不同类型的设备中。”编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

新研发的红外线滤镜可让日常眼镜兼作夜视镜片

新研发的红外线滤镜可让日常眼镜兼作夜视镜片 夜视技术应用广泛,从体育运动到军事和医疗行动。然而,这些技术受到笨重的光处理和低温冷却组件的限制,同时还依赖于窄带隙半导体(如 InGaAs),而这种半导体需要低温运行且噪声水平较高。此外,这些系统通常会阻挡可见光。这些装备可能重达两磅多,因此戴上护目镜进行夜跑是不切实际的,甚至可能是不安全的。澳大利亚的研究人员现在发现,利用基于元表面的上转换技术一种可以同时捕捉红外光和可见光的超薄材料可以增强日常眼镜的夜视能力。他们上个月在《先进材料》(Advanced Materials)杂志上发表了这一研究成果。TMOS 是澳大利亚研究理事会(ARC)的变革性元光学系统卓越中心,该中心的研究人员创造了一种比保鲜膜还薄的红外滤光片,重量不到一克,有朝一日可以安装在一副普通眼镜上。了解一下传统的夜视技术,就会明白这种滤波器任务的复杂性。传统的夜视技术要求红外光子通过一个透镜,遇到一个光电阴极,光电阴极将这些光子转化为电子,电子再通过一个微通道板,以增加产生电子的数量。这些电子通过荧光屏重新转化为光子,产生肉眼可见的强化可见图像。这些元件需要低温冷却,以防止热噪声加剧。相比之下,在基于元表面的上转换技术中,光子通过单个谐振元表面,与泵浦光束混合。共振元表面增强了光子的能量,将其转换为可见光光谱,无需进行电子转换。它还能在室温下工作,无需笨重的冷却系统。此外,利用上转换技术,成像系统可以在一张图像中同时捕捉可见光和不可见光。研究人员最初的技术采用了砷化镓元表面。新的元表面由铌酸锂制成,在可见光范围内完全透明,因此效率更高。此外,光子束在更宽的表面区域传播,限制了数据的角度损失。研究人员首次展示了高分辨率上转换成像技术,将非局部元表面中的1550纳米红外光转换为可见的550纳米光。研究报告的作者罗西奥-卡马乔-莫拉莱斯(Rocio Camacho Morales)说,他们之所以选择这些波长,是因为1550 nm红外光通常用于电信领域,而550 nm是人眼高度敏感的可见光。"未来的研究将包括扩大该设备的敏感波长范围,旨在获得宽带红外成像,以及探索图像处理,包括边缘检测"。 ... PC版: 手机版:

封面图片

研究:新方法有望制造性能更好的低成本光电材料

研究:新方法有望制造性能更好的低成本光电材料 一项新发表在英国《自然》期刊上的国际研究表明,用一种新方法对半导体材料氧化亚铜进行“扭曲”后,发现其捕获光能后转化为可用电能的性能提升70%。这种方法有望制造性能更好的低成本光电材料。 新华社报道,铜氧化物是价格低廉、储量丰富的半导体材料,具有良好的导电性和光学性能,可用于制造太阳能电池、光电器件、传感器等。铜氧化物虽然在捕捉阳光并将其转化为电荷方面相当有效,但容易丢失电荷,材料性能有限。 研究人员说,他们发现电荷在这种半导体材料中沿着对角线方向移动时,比沿着表面或边缘移动要远得多,而能让电荷移动得更远就意味着材料性能更好。 为优化这种低成本材料的性能,研究人员利用薄膜沉积技术,在常温常压下制备出高质量的氧化亚铜晶体薄膜,通过精确控制晶体的生长和流速,使晶体的生长方向“扭向”对角线方向,并观察晶体的生长方向如何影响电荷在材料中的有效移动。 他们发现,对这种新技术制造的氧化亚铜光电阴极的测试表明,与现有的电沉积氧化物制成的光电阴极相比,性能提高70%以上,同时晶体薄膜稳定性也显著提升。 2024年5月5日 1:55 PM

封面图片

科学家发现克服光学损耗的新方法 有望开启光基技术的未来

科学家发现克服光学损耗的新方法 有望开启光基技术的未来 这些研究成果提供了实用的解决方案,如在计算机芯片和数据存储设备等设备中使用更高效的光基设备,以实现更快、更紧凑的数据存储和处理,并提高传感器、成像技术和安全系统的精度。表面等离子体极化子和声子极化子具有高效储能、局部场增强和高灵敏度等优点,这得益于它们在小尺度上限制光的能力。然而,它们的实际应用却受到欧姆损耗问题的阻碍,欧姆损耗会在与天然材料相互作用时导致能量耗散。双曲声子极化子和椭圆声子极化子在α-MoO3 薄膜上的传播。(a) 在 α-MoO3 薄膜上放置天线的原子力显微镜。(b) 在不同实际频率下测量双曲极化子的实际频率。(c) 复频测量提供了超长距离传播行为。(d) 两个不同间距金天线的原子力显微镜。(e) 实际频率 f=990cm-1 时的振幅和实部测量值。(f) 复频 f=(990-2i)cm-1 时的振幅和实部测量值。(图片改编自《自然-材料》,2024 年)。资料来源:香港大学过去三十年来,这一限制阻碍了用于传感、超成像和纳米光子电路的纳米光子学的发展。克服欧姆损耗将大大提高器件性能,从而推动传感技术、高分辨率成像和先进纳米光子电路的发展。论文通讯作者张爽教授解释了研究重点:"为了解决关键应用中的光损耗难题,我们提出了一种实用的解决方案。通过采用新颖的合成复波激励,我们可以实现虚拟增益,抵消极化子系统的内在损耗。为了验证这种方法,我们将其应用于声子极化子传播系统,并观察到极化子传播的显著改善。""我们使用声子极化子材料(如氢化硼和氧化钼)在光学频率范围内进行实验,证明了这种方法。正如预期的那样,我们获得了几乎无损的传播距离,这与理论预测一致,"论文第一作者、香港大学物理系博士后关复新博士补充道。克服光损耗的多频方法在这项研究中,研究小组开发了一种新颖的多频方法来解决偏振子传播中的能量损耗问题。他们使用一种被称为"复频波"的特殊类型波来实现虚拟增益并补偿光学系统中的损耗。普通波在一段时间内保持恒定的振幅或强度,而复频波则同时表现出振荡和放大。这种特性可以更全面地表现波的行为,并能补偿能量损失。使用在光频下工作的 hBN 薄膜进行一维极化子传播(从左到右)。(a) 实际频率图像显示了传播方向上明显的衰减场剖面。(b) 复频测量提供了几乎无衰减的传播行为。(图片改编自《自然-材料》,2024 年)来源:香港大学虽然频率通常被视为实数,但它也有虚部。这个虚部告诉我们,随着时间的推移,波是如何变强或变弱的。具有负(正)虚部的复频波会随着时间的推移而衰减(放大)。然而,在光学中直接进行复频波激励下的测量具有挑战性,因为它需要复杂的时序测量。为了克服这一难题,研究人员采用了傅里叶变换数学工具,将截断的复频波(CFW)分解为具有独立频率的多个分量。就像您在烹饪时需要一种很难找到的特定配料一样,研究人员也采用了类似的思路。他们将复杂的频率波分解成更简单的成分,就像在菜谱中使用替代配料一样。每个成分代表了频率波的不同方面。这就像通过使用替代配料来制作一道美味佳肴,从而获得所需的风味。通过测量不同频率下的这些分量并将数据结合起来,他们重建了复频波照射下的系统行为。这有助于他们理解和补偿能量损失。这种方法大大简化了 CFW 在不同应用中的实际应用,包括极化子传播和超成像。通过在固定间隔的不同实际频率下进行光学测量,就可以构建出系统在复频下的光学响应。这可以通过对不同实际频率下获得的光学响应进行数学组合来实现。该论文的另一位通讯作者、国家纳米科学与技术中心的戴清教授指出,这项工作为解决纳米光子学中存在已久的光损耗问题提供了切实可行的解决方案。他强调了合成复频方法的重要意义,指出该方法可轻松应用于分子传感和纳米光子集成电路等其他各种应用。他进一步强调说:"这种方法非常了不起,而且普遍适用,因为它还可以用来解决其他波系统的损耗问题,包括声波、弹性波和量子波,从而将成像质量提高到前所未有的水平。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

麻省理工学院研究人员展示快速打印金属的新方法

麻省理工学院研究人员展示快速打印金属的新方法 麻省理工学院的一个团队本周公布了一种新方法,该方法优先考虑打印速度和规模(物体大小),而不是分辨率。据介绍,该系统打印大型铝制部件的速度"比同类金属快速成型制造工艺至少快 10 倍。液态金属打印(LMP)利用 100 微米的玻璃珠形成一个结构,将熔化的铝沉积其中,这一过程与注塑成型并无二致。玻璃珠能够承受高温,同时在金属凝固时迅速散热。鉴于铝被归类为"无限可回收"的材料,这项工作背后的团队设想将这一系统与将金属熔化成熔体的机器配对使用。这样的组合对于建筑工地来说可能是无价之宝,能以更低的成本实现更快的速度和更大的物体。不过,至少有一个很大的注意事项:分辨率。从图片中可以看出,最终产品的精确度远不及其他一些方法。制作出的金属物体凹凸不平,与逐层挤出塑料的熔融沉积建模(FDM)产品十分相似。当然,也可以对铝材进行打磨,但这很可能需要额外的时间和金钱,大多数人都不愿意在加工过程中引入这种工艺。"液态金属印刷在生产定制几何形状金属零件的能力方面确实走在了前列,同时还能保持快速周转,这在其他印刷或成型技术中通常是无法实现的,这项技术绝对有潜力彻底改变目前处理金属印刷和金属成型的方式。"Emeco 公司的 Jaye Buchbinder 说,该公司是一家家具公司,为这项研究提供了资金支持。 ... PC版: 手机版:

封面图片

研究人员开发出一种利用磁子传输量子信息的新方法

研究人员开发出一种利用磁子传输量子信息的新方法 HZDR 的研究人员成功地在磁盘中产生了类似于波的激发即所谓的磁子来专门操纵碳化硅中原子大小的量子比特。这为量子网络中的信息传输开辟了新的可能性。图片来源:HZDR / Mauricio Bejarano为了满足这一需求,德累斯顿-罗森多夫亥姆霍兹中心(HZDR)的一个研究小组现在推出了一种传输量子信息的新方法:该小组通过利用磁子(磁性材料中的波状激起)的磁场来操纵量子比特(即所谓的量子比特),磁子发生在微观磁盘中。研究人员在《科学进展》(Science Advances)杂志上发表了他们的研究成果。建造可编程的通用量子计算机是当代最具挑战性的工程和科学研究之一。这种计算机的实现为物流、金融和制药等不同行业领域带来了巨大潜力。然而,由于量子计算机技术在存储和处理信息时存在固有的脆弱性,因此阻碍了实用量子计算机的建造。量子信息被编码在量子比特中,而量子比特极易受到环境噪声的影响。微小的热波动(几分之一度)就可能完全破坏计算。这促使研究人员将量子计算机的功能分布在不同的独立构件中,以努力降低出错率,并利用这些构件的互补优势。"然而,这就带来了一个问题,即如何在模块之间传输量子信息,使信息不会丢失,"HZDR 研究员、该刊物第一作者毛里西奥-贝哈拉诺(Mauricio Bejarano)说。"我们的研究正是在这个特定的利基上,在不同的量子模块之间传输通信。"目前,传输量子信息和寻址量子比特的既定方法是通过微波天线。这是Google和 IBM 在其超导芯片中使用的方法,也是在这场量子竞赛中处于领先地位的技术平台。"而我们则是通过磁子来寻址量子比特。磁子可被视为穿过磁性材料的磁激发波。这样做的好处是,磁子的波长在微米范围内,比传统微波技术的厘米波短得多。因此,磁子的微波足迹在芯片中花费的空间更少。HZDR 小组研究了磁子与碳化硅晶体结构中硅原子空位形成的量子比特的相互作用,碳化硅是一种常用于大功率电子器件的材料。这类量子比特通常被称为自旋量子比特,因为量子信息是由空位的自旋状态编码的。但是,如何利用磁子来控制这类量子比特呢?"通常情况下,磁子是通过微波天线产生的。"贝哈拉诺解释说:"这就带来了一个问题,即很难将来自天线的微波驱动与来自磁子的微波驱动分离开来。"为了将微波从磁子中分离出来,HZDR 团队利用了一种在镍铁合金微观磁盘中可以观察到的奇特磁现象。"由于非线性过程,磁盘内的一些磁子具有比天线驱动频率低得多的频率。我们只用这些频率较低的磁子来操纵量子比特"。研究小组强调,他们还没有进行任何量子计算。不过,他们表明,完全用磁子处理量子比特从根本上是可行的。"迄今为止,量子工程界还没有意识到磁子可以用来控制量子比特,"Schultheiß强调说。"但我们的实验证明,这些磁波确实可以派上用场"。为了进一步发展他们的方法,研究小组已经在为未来的计划做准备:他们想尝试控制几个间距很近的单个量子比特,让磁子介导它们的纠缠过程这是进行量子计算的先决条件。他们的设想是,从长远来看,磁子可以被直接电流激发,其精确度可以达到在量子比特阵列中专门针对单个量子比特。这样就可以将磁子用作可编程量子总线,以极其有效的方式寻址量子比特。虽然未来还有大量工作要做,但该研究小组的研究强调,将磁子系统与量子技术相结合,可以为未来开发实用量子计算机提供有益的启示。编译自:ScitechDaily ... PC版: 手机版:

封面图片

澳洲研究人员找到无需服药治疗失眠的新方法

澳洲研究人员找到无需服药治疗失眠的新方法 尽管有大量证据支持认知行为疗法(CBTi)对失眠症的疗效,但由于受过 CBTi 培训的心理学家短缺,获得这种"一线"治疗的机会极为有限。在澳大利亚,大约 90% 的失眠症初级保健患者会服用安眠药,而只有 1% 的患者会被转介给心理学家进行 CBTi。亚历山大-斯威特曼博士。资料来源:弗林德斯大学为了提高CBTi的可及性,减少对安眠药的依赖,弗林德斯大学和西澳大利亚大学的睡眠专家设计并测试了一种名为"卧室之窗"的自我指导数字CBTi程序,以治疗失眠症。亚历山大-斯威特曼(Alexander Sweetman)博士领导了今天发表在《睡眠前沿》(Frontiers in Sleep)上的最新研究。他说:"我们知道,CBTi 可以改善失眠、心理健康和生活质量,我们希望看到更多的人接受这种治疗,因为它可以减少对安眠药或其他干预措施的需求,而这些措施可能无法解决长期的睡眠问题。"失眠与并发症失眠和阻塞性睡眠呼吸暂停(OSA)是两种最常见的睡眠障碍,而且经常同时发生。大约 30-40% 的失眠症患者合并有 OSA,但大多数 OSA 患者仍未得到诊断和治疗。斯威特曼博士说:"与既无睡眠障碍又有睡眠呼吸暂停(COMISA)的人相比,通常有更差的睡眠、日间功能、心理健康、身体健康、工作效率和生活质量,与单独有失眠症或单独有 OSA 的人相比也是如此。最近的研究发现,在 10-20 年的随访过程中,COMISA 患者的死亡风险比两种情况都没有的患者高出 50%-70%。"睡前视窗程序示意图。资料来源:弗林德斯大学他说:"鉴于 COMISA 的高发病率和不利健康的风险,我们必须针对这种情况制定和实施有效的循证管理方法。为了增加COMISA患者获得CBTi的机会,我们开发了适合失眠症患者和COMISA患者的自助式互动数字CBTi程序,并比较了其在失眠症患者与合并失眠症和高危睡眠呼吸暂停患者之间的有效性"。62 名有失眠症状的成年人在 18 个月的时间里使用了"卧室之窗",并报告说失眠症状和相关的心理健康症状得到了显著而持续的改善。该计划专为失眠症患者设计,包括失眠症患者本人和 COMISA。每周一次,每次约 20-30 分钟,包括短视频、图像和基于文本的信息。治疗内容包括心理教育、刺激控制疗法、睡眠限制疗法、放松疗法、认知疗法和睡眠卫生信息。该程序包括持续评估嗜睡和警觉症状的算法,并提供量身定制的互动建议,以治疗失眠症,同时不会加重白天嗜睡的程度。斯威特曼博士补充说:"我们的研究取得了积极的成果,这凸显了在整个医疗系统增加COMISA患者的使用机会之前,对确诊为OSA的患者进行这种数字化CBTi项目的有效性、安全性和可接受性调查的潜力。"编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人