中子星碰撞事件GW170817帮助揭开暗物质之谜

中子星碰撞事件GW170817帮助揭开暗物质之谜 两颗正在合并的中子星的艺术家插图。资料来源:NSF/LIGO/索诺玛州立大学/A. Simonnet类轴子粒子研究文理学院的物理学家布帕尔-德夫(Bhupal Dev)利用这次中子星合并的观测结果天文学界将这一事件命名为GW170817得出了关于类轴子粒子的新约束条件。这些假想粒子尚未被直接观测到,但它们出现在标准物理学模型的许多扩展中。轴子和类轴子粒子是构成科学家至今无法解释的宇宙中部分或全部"缺失"物质或暗物质的主要候选粒子。至少,这些相互作用微弱的粒子可以作为一种门户,将人类所知的可见部分与宇宙中未知的黑暗部分连接起来。《物理评论快报》(Physical Review Letters)上这项研究的第一作者、该大学麦克唐纳空间科学中心(McDonnell Center for the Space Sciences)的研究员德夫说:"我们有充分的理由怀疑,超越标准模型的新物理学可能就潜伏在不远处。"中子星合并的启示当两颗中子星合并时,会在短时间内形成一个高温、高密度的残余物。德夫说,这个残余物是产生奇异粒子的理想温床。残余物会在一秒钟内变得比单个恒星热得多,然后根据初始质量的不同,沉淀为一颗更大的中子星或黑洞。在这幅动画中,注定要灭亡的中子星呼啸着走向灭亡,它代表了在 GW170817 发生九天后观测到的现象。图片来源:美国宇航局戈达德太空飞行中心/CI 实验室这些新粒子悄无声息地逃离了碰撞的碎片,在远离其源头的地方,可以衰变成已知的粒子,通常是光子。德夫和他的团队(包括华盛顿大学校友史蒂文-哈里斯(现为印第安纳大学 NP3M 研究员)以及让-弗朗索瓦-福尔廷、库弗-辛哈和张永超)发现,这些逃逸的粒子会产生独特的电磁信号,可以被美国宇航局的费米-LAT 等伽马射线望远镜探测到。研究小组分析了这些电磁信号的光谱和时间信息,确定他们可以将这些信号与已知的天体物理背景区分开来。然后,他们利用费米-LAT关于GW170817的数据,推导出轴子-光子耦合作为轴子质量函数的新约束条件。这些天体物理约束与实验室实验(如轴子暗物质实验(ADMX))的约束相辅相成,后者探测的是轴子参数空间的不同区域。粒子物理学的未来前景未来,科学家们可以利用现有的伽马射线太空望远镜(如费米-LAT)或拟议中的伽马射线任务(如华盛顿大学领导的先进粒子-天体物理学望远镜(APT)),在中子星碰撞期间进行其他测量,帮助提高他们对类轴心粒子的理解。德夫说:"中子星合并等极端天体物理环境为我们寻找轴子等暗部门粒子提供了新的机会之窗,轴子可能是了解宇宙中缺少的85%物质的关键。"编译自/scitechdaily ... PC版: 手机版:

相关推荐

封面图片

云南天文台双中子星研究领域取得新进展

云南天文台双中子星研究领域取得新进展 双中子星系统示意图。图片来源:云南天文台南京大学郭云浪博士与中国科学院云南天文台王博研究员等人,对形成双中子星系统的电子俘获超新星通道作了系统研究,给出了该通道下形成双中子星系统的初始参数空间,发现该参数空间中的氦星伴星质量和最小初始轨道周期,随着金属丰度的增加而增加。同时,通过考虑氦星伴星在塌缩成中子星时受到的反冲速度,研究了该通道下形成双中子星系统的特征。他们发现小于50公里每秒的低反冲速度,能够解释观测上大多数的双中子星系统特征。此外,通过考虑氦星表面的残留氢包层,该团队还发现中子星在双星演化过程中能够从伴星上吸积更多的物质,从而达到更快的转速。 ... PC版: 手机版:

封面图片

跨学科合作将看不见的暗物质变成看得见的光

跨学科合作将看不见的暗物质变成看得见的光 左侧星系团,右侧可见暗物质环。资料来源:NASA、ESA、M. J. Jee 和 H. Ford(约翰霍普金斯大学)为了揭开它的神秘面纱,科学家们进行了数次实验,但尽管科学家们进行了数十年的探索,仍然一无所获。现在,我们正在美国耶鲁大学进行的新实验提供了一种新方法。自古以来,暗物质就一直存在于宇宙中,将恒星和星系连接在一起。它无形而微妙,似乎不会与光或任何其他物质发生相互作用。事实上,它一定是一种全新的物质。粒子物理学的标准模型是不完整的,这是一个问题。我们必须寻找新的基本粒子。令人惊讶的是,标准模型的同样缺陷却为我们提供了新粒子可能藏身之处的宝贵提示。以中子为例。它与质子一起构成原子核。尽管中子总体上是中性的,但该理论认为它是由三个带电的组成粒子(称为夸克)构成的。正因为如此,我们会发现中子的某些部分带正电,而另一些部分则带负电这意味着它具有物理学家所说的电偶极矩。然而,许多测量它的尝试都得到了同样的结果:它太小了,无法被探测到,它又成了一个幽灵。我们谈论的不是仪器的不足,而是一个必须小于百亿分之一的参数。它是如此微小,以至于人们怀疑它是否可能完全为零。然而,在物理学中,数学上的"零"总是一个强有力的陈述。上世纪 70 年代末,粒子物理学家罗伯托-佩奇和海伦-奎恩(以及后来的弗兰克-威尔切克和史蒂文-温伯格)试图将理论与证据结合起来。他们认为,也许这个参数并不为零。相反,它是一个在宇宙大爆炸后慢慢失去电荷、演变为零的动态量。理论计算表明,如果发生了这样的事件,它一定会留下许多轻盈、诡异的粒子。因为它们可以"清除"中子问题,所以被冠以"axions"(一种洗涤剂品牌)之名。更有甚者。如果轴子是在早期宇宙中产生的,那么它们从那时起就一直存在。最重要的是,它们的特性符合暗物质的所有预期。由于这些原因,轴子已成为暗物质最受欢迎的候选粒子之一。轴子只会与其他粒子产生微弱的相互作用。然而,这意味着它们仍会发生一些相互作用。看不见的轴子甚至可以转化为普通粒子,包括讽刺的是光子,光的本质。在特殊情况下,比如存在磁场时,这种情况可能会发生。这对实验物理学家来说简直是天赐良机。许多实验都试图在实验室的受控环境中唤起轴子幽灵。例如,有些实验旨在将光转化为轴子,然后在墙的另一侧将轴子重新转化为光。目前,最灵敏的方法是利用一种名为"光镜"的装置,瞄准弥漫在银河系(进而地球)中的暗物质光环。它是一个浸没在强磁场中的导电空腔;前者捕捉我们周围的暗物质(假设是轴子),后者诱导其转化为光。其结果是在空腔内出现电磁信号,并根据轴子质量以特征频率振荡。该系统的工作原理类似于接收无线电。需要对其进行适当调整,以截取我们感兴趣的频率。实际上,腔体的尺寸会发生变化,以适应不同的特征频率。如果轴心和空腔的频率不匹配,就像把收音机调错频道一样。强力磁铁被移至耶鲁大学实验室。资料来源:耶鲁大学遗憾的是,我们寻找的频道无法提前预测。别无选择下只能扫描所有可能的频率。这就好比用一台老式收音机在茫茫白噪声中寻找一个电台大海捞针,每次转动频率旋钮都要变大或变小。然而,这些并不是唯一的挑战。宇宙学指出,数十千兆赫是轴子搜索的最新、最有希望的前沿领域。由于更高的频率需要更小的腔体,探索这一区域需要的腔体太小,无法捕捉到有意义的信号量。新的实验正试图寻找替代路径。我们的轴心纵向等离子体光镜(阿尔法)实验使用了一种基于超材料的新概念腔体。超材料是一种复合材料,具有不同于其组成成分的整体特性它们超越了各部分的总和。一个充满导电棒的空腔,在体积几乎没有变化的情况下,其特征频率仿佛小了一百万倍。这正是我们所需要的。此外,导电棒还提供了一个内置的、易于调节的调谐系统。目前,我们正在建设该装置,几年后就可以采集数据。这项技术前景广阔。它的开发是固态物理学家、电气工程师、粒子物理学家甚至数学家通力合作的结果。尽管轴子如此难以捉摸,但它正在推动着进步,任何幽灵都无法夺走它。作者:Andrea Gallo Rosso,斯德哥尔摩大学物理学博士后。改编自最初发表在《对话》上的一篇文章。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

中国建成世界最大最深的暗物质实验室

中国建成世界最大最深的暗物质实验室 中国锦屏地下实验室(CJPL)自2010年投运,经过三年修建,中国锦屏地下实验室二期(CJPL-II)于2023年12月投入科学运行。其33万立方米的超大空间超过了之前深度和体积的纪录保持者意大利的格兰萨索国家实验室(LNGS)。更大的空间让粒子和天体物理氙探测实验(PandaX)和中国暗物质实验(CDEX)这类项目可以再次升级。芝加哥大学的物理学家Juan Collar说:“他们在十年内完成的工作令人赞叹。”暗物质一直是科学界的一个谜。物理学家经过计算发现,可见物质产生的引力太弱,无法阻止快速移动的星系飞散。因此,他们提出理论,认为暗物质就像不可见的胶水,把整个宇宙黏在一起。虽然暗物质理应无处不在,但事实证明直接观测到暗物质很难,因为理论上暗物质与普通物质不会相互作用,也不会释放、反射或吸收光。之前有人提出探测到了暗物质,但反驳观点认为,这些实验可能受到了其他信号的混淆。科学荣誉等候着第一个探测到暗物质的人,这也是粒子物理学的最大任务之一,在CDEX合作组工作的台湾中央研究院的物理学家Henry Tsz-King Wong说道。山下之光寻找暗物质的最佳场所是地下,因为岩体能替探测器挡掉背景“噪音”,比如从太空向地球洒落的高能粒子宇宙射线就会淹没潜在的暗物质信号,意大利国家核物理研究院的物理学家Marco Selvi说,想从地球表面探测暗物质就像在一个人声鼎沸的体育场里辨认一个小孩发出的微弱声音。在深地环境下,CJPL-II 的宇宙线通量仅为地表的0.000001%,使其成为世界上屏蔽效果最好的地下实验室之一。实验室的墙体还包裹了由橡胶、混凝土等材料混合而成的10厘米厚的保护结构,能防止周围岩体释放的水和放射性氡气,以免暗物质探测实验受到干扰。实验室的研究团队已经在利用新增的空间了。在CJPL-II施工期间,PandaX团队将其探测器从120公斤液氙升级到4吨。当潜在的暗物质颗粒与氙原子发生碰撞,其能量就会转变成能被光电传感器探测到的闪光。该探测器很快将赶上LNGS的XENONnT实验(8.6吨)以及美国桑福德地下研究所的LUX-ZEPLIN实验(7吨)。PandaX-4T探测器位于一个900立方米的水池中,这是为了能进一步屏蔽杂散粒子的干扰,团队成员、上海交通大学物理学家周宁表示,“灵敏度提升后,我们就能用探测器测试不同类型的相互作用。”该团队最终想要打造一个40-50吨的氙探测器,有望与以40吨为目标的达尔文实验(DARWIN Experiment)相抗衡。与此同时,CDEX团队也在部署一台锗探测器,锗探测器能寻找比氙实验寻找的质量更小的潜在暗物质粒子,CDEX团队成员、北京清华大学物理学家岳骞说。CDEX探测器已经从1公斤锗升级到10公斤锗,并计划打造一个1吨量级的探测器阵列。如果一个暗物质粒子撞到了这个探测器,其相互作用就应产生电荷,这个电荷会转换为电信号。岳骞希望CDEX能吸引更多国际合作,目前已经有印度和土耳其的研究人员加入。Selvi说,虽然各国对暗物质的搜寻非常激烈,但世界上多个地下实验室共同开展相似实验能让研究人员比对结果。2022年,PandaX团队便使用一种类似手段确认了LNGS的XENON 实验的结果该实验发现2020年XENON探测到的一个意外信号来自背景噪音而不是暗物质。Collar认为,新的方法和理论也将推动暗物质的研究,而不是用更大更灵敏的探测器打败对手。他说,“已经有很多重复的版本了。”周宁说,下一个十年里,CJPL-II团队将继续提升探测器的灵敏度。他也希望全球暗物质研究社区能共享数据并将CJPL-II的数据与他们自己的数据结合。他说:“我们还有很多工作要做。” ... PC版: 手机版:

封面图片

科学家们探测到了中子星与潜在黑洞在质量缝隙中碰撞产生的引力波

科学家们探测到了中子星与潜在黑洞在质量缝隙中碰撞产生的引力波 低质量间隙黑洞(深灰色表面)与中子星的凝聚与合并,颜色从深蓝色(每立方厘米 60 克)到白色(每立方厘米 600 千克)不等,凸显了中子星低密度物质的强烈变形。资料来源:I. Markin(波茨坦大学)、T. Dietrich(波茨坦大学和马克斯-普朗克引力物理研究所)、H. Pfeiffer、A. Buonanno(马克斯-普朗克引力物理研究所)。2023 年 5 月,就在 LIGO-Virgo-KAGRA 第四次观测运行开始后不久,位于美国路易斯安那州的 LIGO 利文斯顿探测器观测到了一个引力波信号,该信号来自于很可能是一颗中子星与一个质量为太阳 2.5 至 4.5 倍的紧凑天体的碰撞。中子星和黑洞都是紧凑型天体,是大质量恒星爆炸后的致密残余物。这个名为 GW230529 的信号之所以引人入胜,是因为它的质量较大。它处于已知最重的中子星和最轻的黑洞之间可能存在的质量差距之内。引力波信号本身并不能揭示这个天体的性质。未来对类似事件的探测,特别是那些伴随着电磁辐射爆发的事件,可能有助于解决这个问题。不列颠哥伦比亚大学助理教授、LIGO 科学合作组织副发言人杰斯-麦基弗博士(Dr. Jess McIver)说:"这次探测是我们从第四次 LIGO-Virgo-KAGRA 观测运行中获得的第一个令人兴奋的结果,它揭示了中子星和低质量黑洞之间的类似碰撞的发生率可能比我们之前想象的要高。"由于只有一个引力波探测器看到了这一事件,因此评估它是否真实变得更加困难。这幅图像显示了低质量间隙黑洞(深灰色表面)与中子星的合并,颜色从深橙色(每立方厘米 100 万吨)到白色(每立方厘米 6 亿吨)不等。引力波信号用一组正偏振的应变振幅值表示,颜色从深蓝色到青色不等。资料来源:I. Markin(波茨坦大学)、T. Dietrich(波茨坦大学和马克斯-普朗克引力物理研究所)、H. Pfeiffer、A. Buonanno(马克斯-普朗克引力物理研究所)。检测技术的进步ICG 的研究软件工程师 Gareth Cabourn Davies 博士开发了用于在单个探测器中搜索事件的工具。他说"通过在多个探测器中看到事件来证实事件是我们从噪声中分离信号的最强大工具之一。通过使用适当的背景噪声模型,即使在没有其他探测器支持我们所看到的情况下,我们也能判断出一个事件"。在2015年探测到引力波之前,恒星质量黑洞的质量主要是通过X射线观测发现的,而中子星的质量则是通过无线电观测发现的。由此得出的测量结果分为两个截然不同的范围,两者之间的差距约为太阳质量的 2 到 5 倍。多年来,有少量测量结果蚕食了这一质量差距,天体物理学家对此仍有很大争议。最新研究结果的影响对 GW230529 信号的分析表明,它来自两个紧凑型天体的合并,其中一个天体的质量是太阳质量的 1.2 到 2.0 倍,另一个天体的质量是太阳质量的两倍多一点。虽然引力波信号没有提供足够的信息来确定这些紧凑的天体是中子星还是黑洞,但看起来较轻的天体很可能是中子星,而较重的天体则是黑洞。LIGO-Virgo-KAGRA合作组织的科学家们确信,较重的天体就在质量差距之内。引力波观测现在已经提供了近 200 个紧凑天体质量的测量值。其中,只有一次并合可能涉及质量鸿沟紧凑天体GW190814 信号来自黑洞与一个紧凑天体的并合,该天体的质量超过了已知最重的中子星,而且可能在质量鸿沟之内。来自美国西北大学的 Sylvia Biscoveanu 博士说:"虽然之前已经报道过引力波和电磁波中存在质量间隙天体的证据,但这个系统尤其令人兴奋,因为它是首次引力波探测到与中子星配对的质量间隙天体。对这一系统的观测对双星演化理论和紧凑天体合并的电磁对应理论都有重要意义"。正在进行和未来的观察第四次观测运行计划持续 20 个月,其中包括几个月的间歇期,以便对探测器进行维护并进行一些必要的改进。截至 2024 年 1 月 16 日,也就是当前的间歇期开始时,总共发现了 81 个重要的候选信号。GW230529 是经过详细调查后公布的第一个候选信号。第四次观测运行将于 2024 年 4 月 10 日恢复,LIGO Hanford、LIGO Livingston 和 Virgo 探测器将同时运行。观测运行将持续到 2025 年 2 月,不会再有中断观测的计划。在观测运行继续进行的同时,LIGO-Virgo-KAGRA 的研究人员正在分析运行前半段的数据,并检查已经确定的其余 80 个重要候选信号。到 2025 年 2 月第四次观测运行结束时,观测到的引力波信号总数将超过 200 个。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

激光干涉引力波天文台(LIGO)观测到名为GW230529的神秘信号

激光干涉引力波天文台(LIGO)观测到名为GW230529的神秘信号 马克斯-普朗克引力物理研究所的研究人员通过精确的波形模型、新的数据分析方法和先进的探测器技术为这一发现做出了贡献。虽然这一特殊事件只是因为引力波而被观测到,但它增加了人们对未来用电磁波观测到更多此类事件的期待。"大约 30 年来,研究人员一直在争论最重的中子星和最轻的黑洞之间是否存在质量鸿沟。现在,科学家们首次发现了一个天体,它的质量正好落在这个被认为几乎是空的缝隙中。"位于波茨坦科学园的马克斯-普朗克引力物理研究所所长亚历山德拉-布奥纳诺(Alessandra Buonanno)说:"现在是引力波研究非常激动人心的时刻,我们深入的研究领域有望重塑我们对由引力主导的天体物理现象的理论认识。"天体物理学家还利用 GW230529 检验了爱因斯坦的广义相对论。"GW230529与爱因斯坦理论的预测完全一致,"参与研究的波茨坦爱因斯坦研究所研究生Elise Sänger说。"它提供了迄今为止利用 LVK 引力波事件对其他引力理论的一些最佳约束"。为了确定相互绕行并合并产生引力波信号的天体的特性,天文学家将来自 LIGO 利文斯顿探测器的数据与两个最先进的波形模型进行了比较。"波茨坦阿尔伯特爱因斯坦研究所团队的博士后研究员埃克托尔-埃斯特莱斯-埃斯特雷拉(Héctor Estellés Estrella)说:"这些模型包含了一系列相对论效应,以确保产生的信号模型尽可能真实和全面,便于与观测数据进行比较。"波茨坦阿尔伯特爱因斯坦研究所博士生洛伦佐-庞皮利(Lorenzo Pompili)补充说:"除其他外,我们的波形模型可以准确描述黑洞以光速的几分之一在时空中旋转,发射出多个谐波的引力辐射。GW230529是由一个质量为太阳1.3至2.1倍的小型天体与另一个质量为太阳2.6至4.7倍的小型天体合并而成的。这些紧凑天体究竟是中子星还是黑洞,仅靠引力波分析无法确定。不过,根据双星的所有已知特性,天文学家认为较轻的天体是一颗中子星,较重的是一个黑洞。因此,较重天体的质量很有把握地位于质量间隙中,而之前人们认为这个间隙大部分是空的。以前在这个质量范围内的候选天体中,没有一个能以同样的确定性被识别出来。爱因斯坦的广义相对论预测,中子星的质量比太阳轻三倍。然而,中子星在坍缩成黑洞之前的最大质量的确切数值尚不清楚。"考虑到电磁观测和我们目前对恒星演化的掌握,预计质量在3到5个太阳质量范围内的黑洞或中子星非常少。然而,新发现的天体之一的质量恰好符合这一范围,"布奥纳诺解释说。近年来,天文学家发现了几个质量可能符合这一难以捉摸的差距的天体。就 GW190814 而言,LIGO 和 Virgo 发现了一个处于质量谱下边界的天体。然而,通过引力波信号 GW230529 探测到的紧凑型天体是第一个其质量明确属于这一差距的天体。 ... PC版: 手机版:

封面图片

天体物理学家在"El Gordo"星系团探测到潜在的碰撞暗物质

天体物理学家在"El Gordo"星系团探测到潜在的碰撞暗物质 这项研究利用数值模拟分析了"El Gordo"(西班牙文的字面意思是"胖子")一个距离我们 70 亿光年的巨型星团合并体内部发生的情况。计算结果表明,在这个星团中,观测到的暗物质最大密度点与其他质量成分最大密度点之间的物理分离可以用所谓的SIDM(自相互作用暗物质)模型来解释,而不是标准模型。这项研究为支持 SIDM 模型做出了重要贡献,根据该模型,暗物质粒子通过碰撞交换能量,从而产生有趣的天体物理学影响。埃尔戈多星系团合成图。图片来源:X 射线:NASA/CXC/Rutgers/J.Hughes et al, Optical: ESO/VLT/Pontificia Universidad.智利天主教大学/L.Infante & SOAR (MSU/NOAO/UNC/CNPq-Brazil)/Rutgers/F.Menanteau, IR: NASA/JPL/Rutgers/F.Menanteau"根据目前公认的标准宇宙学模型,宇宙目前的重子物质密度仅占其总物质含量的 10%。剩下的 90% 是暗物质",该研究的作者里卡多-瓦尔达尼尼解释说。"一般认为,这种物质是非重子的,由冷的无碰撞粒子组成,只对引力有反应。因此被称为"冷暗物质"(CDM)。"研究人员说:"然而,仍有许多观测结果无法用标准模型来解释。"为了回答这些问题,几位作者提出了一个替代模型,称为 SIDM。证明暗物质的碰撞特性,更广泛地说,证明标准宇宙学模型的替代理论是非常复杂的:"然而,在距离我们许多光年之外,有一些独特的实验室可以证明对这一目的非常有用。这些实验室就是大质量星系团,它们是巨大的宇宙结构,一旦发生碰撞,就会产生自宇宙大爆炸以来能量最大的事件。厄尔戈多星系团的质量约为1015个太阳质量,是我们已知的最大星系团之一。由于其特殊性,厄尔戈多一直是众多理论和观测研究的主题"。暗物质可能是碰撞产生的根据标准范式,在星团合并过程中,碰撞气体质量部分的行为将不同于其他两个部分星系和暗物质。在这种情况下,气体会耗散其部分初始能量。瓦尔达尼尼解释说:"这就是为什么在碰撞之后,气体质量密度的峰值会落后于暗物质和星系质量密度的峰值。"然而,在 SIDM 模型中,应该观察到一种奇特的现象,即暗物质中心点它的最大密度点与其他质量成分的中心点在物理上分离,这种奇特现象代表了真正的"SIDM 模型特征"。根据观测,这正是"El Gordo"内部发生的情况。观察"El Gordo"瓦尔达尼尼解释说:"让我们从观测开始。它由两个巨大的子星团组成,分别称为西北(NW)和东南(SE)。El Gordo"星团的 X 射线图像显示,在东南子星团中有一个单一的 X 射线发射峰值,在 X 射线峰值之外还有两条拉长的微弱尾巴。值得注意的是不同质量成分的峰值位置。与"子弹"星团(另一个碰撞星团的重要例子)不同的是,X 射线峰值出现在东南暗物质峰值之前。此外,最亮星团星系(BCG)不仅落后于X射线峰值,而且在空间上似乎也偏离了东南质量中心点。另一个值得注意的方面可以在西北星系团中看到,星系数量密度峰在空间上偏离了相应的质量峰"。研究结果表明,碰撞暗物质可以解释在"El Gordo"观测到的现象。为了解释他的发现并验证 SIDM 模型,瓦尔达尼尼在《天文学与天体物理学》上发表的研究报告中使用了大量所谓的 N 体/流体力学模拟。因此,他进行了一项系统的研究,旨在重现"El Gordo"的观测特征。瓦尔达尼尼指出:"这项模拟研究最重要的结果是,如果暗物质是自相互作用的,那么在"El Gordo"星团不同质量中心点之间观测到的相对分离现象自然就能得到解释。正因为如此,这些发现提供了一个明确的暗物质行为特征,它在能量非常高的高红移星团碰撞中表现出碰撞特性。"然而,也有不一致的地方,因为这些模拟得到的 SIDM 截面值高于目前的上限,而目前的上限在星团尺度上为一阶。这表明,目前的 SIDM 模型应被视为一种低阶近似,而描述暗物质在主要星团合并中相互作用的基本物理过程要比通常假定的基于暗物质粒子散射的方法所能充分表达的更为复杂。"这项研究令人信服地证明了在碰撞星团之间存在自相互作用暗物质的可能性,以此替代标准的无碰撞暗物质范式"。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人