中国建成世界最大最深的暗物质实验室

中国建成世界最大最深的暗物质实验室 中国锦屏地下实验室(CJPL)自2010年投运,经过三年修建,中国锦屏地下实验室二期(CJPL-II)于2023年12月投入科学运行。其33万立方米的超大空间超过了之前深度和体积的纪录保持者意大利的格兰萨索国家实验室(LNGS)。更大的空间让粒子和天体物理氙探测实验(PandaX)和中国暗物质实验(CDEX)这类项目可以再次升级。芝加哥大学的物理学家Juan Collar说:“他们在十年内完成的工作令人赞叹。”暗物质一直是科学界的一个谜。物理学家经过计算发现,可见物质产生的引力太弱,无法阻止快速移动的星系飞散。因此,他们提出理论,认为暗物质就像不可见的胶水,把整个宇宙黏在一起。虽然暗物质理应无处不在,但事实证明直接观测到暗物质很难,因为理论上暗物质与普通物质不会相互作用,也不会释放、反射或吸收光。之前有人提出探测到了暗物质,但反驳观点认为,这些实验可能受到了其他信号的混淆。科学荣誉等候着第一个探测到暗物质的人,这也是粒子物理学的最大任务之一,在CDEX合作组工作的台湾中央研究院的物理学家Henry Tsz-King Wong说道。山下之光寻找暗物质的最佳场所是地下,因为岩体能替探测器挡掉背景“噪音”,比如从太空向地球洒落的高能粒子宇宙射线就会淹没潜在的暗物质信号,意大利国家核物理研究院的物理学家Marco Selvi说,想从地球表面探测暗物质就像在一个人声鼎沸的体育场里辨认一个小孩发出的微弱声音。在深地环境下,CJPL-II 的宇宙线通量仅为地表的0.000001%,使其成为世界上屏蔽效果最好的地下实验室之一。实验室的墙体还包裹了由橡胶、混凝土等材料混合而成的10厘米厚的保护结构,能防止周围岩体释放的水和放射性氡气,以免暗物质探测实验受到干扰。实验室的研究团队已经在利用新增的空间了。在CJPL-II施工期间,PandaX团队将其探测器从120公斤液氙升级到4吨。当潜在的暗物质颗粒与氙原子发生碰撞,其能量就会转变成能被光电传感器探测到的闪光。该探测器很快将赶上LNGS的XENONnT实验(8.6吨)以及美国桑福德地下研究所的LUX-ZEPLIN实验(7吨)。PandaX-4T探测器位于一个900立方米的水池中,这是为了能进一步屏蔽杂散粒子的干扰,团队成员、上海交通大学物理学家周宁表示,“灵敏度提升后,我们就能用探测器测试不同类型的相互作用。”该团队最终想要打造一个40-50吨的氙探测器,有望与以40吨为目标的达尔文实验(DARWIN Experiment)相抗衡。与此同时,CDEX团队也在部署一台锗探测器,锗探测器能寻找比氙实验寻找的质量更小的潜在暗物质粒子,CDEX团队成员、北京清华大学物理学家岳骞说。CDEX探测器已经从1公斤锗升级到10公斤锗,并计划打造一个1吨量级的探测器阵列。如果一个暗物质粒子撞到了这个探测器,其相互作用就应产生电荷,这个电荷会转换为电信号。岳骞希望CDEX能吸引更多国际合作,目前已经有印度和土耳其的研究人员加入。Selvi说,虽然各国对暗物质的搜寻非常激烈,但世界上多个地下实验室共同开展相似实验能让研究人员比对结果。2022年,PandaX团队便使用一种类似手段确认了LNGS的XENON 实验的结果该实验发现2020年XENON探测到的一个意外信号来自背景噪音而不是暗物质。Collar认为,新的方法和理论也将推动暗物质的研究,而不是用更大更灵敏的探测器打败对手。他说,“已经有很多重复的版本了。”周宁说,下一个十年里,CJPL-II团队将继续提升探测器的灵敏度。他也希望全球暗物质研究社区能共享数据并将CJPL-II的数据与他们自己的数据结合。他说:“我们还有很多工作要做。” ... PC版: 手机版:

相关推荐

封面图片

科学家提出搜寻暗物质的新方法

科学家提出搜寻暗物质的新方法 自暗物质被发现以来,科学家们一直未能探测到它,即使几十年来在世界各地部署了多个超灵敏粒子探测器实验也无济于事。现在,美国能源部(DOE)SLAC 国家加速器实验室的物理学家们提出了一种利用量子设备寻找暗物质的新方法。SLAC物理学家丽贝卡-利恩(Rebecca Leane)是这项新研究的作者之一,她认为大多数暗物质实验都在寻找银河系暗物质,这种暗物质会直接从太空发射到地球上,但另一种暗物质可能已经在地球周围徘徊了很多年。利恩说:"暗物质进入地球后,会四处弹跳,最终被地球的引力场困住。随着时间的推移,这种热化暗物质的密度会比少数松散的星系粒子更高,这意味着它更有可能撞上探测器。不幸的是,热化暗物质的移动速度要比银河系暗物质慢得多,这意味着它传递的能量要比银河系暗物质少得多传统探测器可能无法看到。"有鉴于此,利恩和 SLAC 博士后研究员阿尼尔班-达斯找到了 SLAC 的科学家诺亚-库林斯基,他是一个新实验室的负责人,主要研究用量子传感器探测暗物质。库林斯基说,科学家通常认为这是因为冷却系统不完善或环境中存在热源。但他说,可能还有其他原因:"如果我们实际上有一个完美的冷系统,而我们无法有效冷却它的原因是它不断受到暗物质的轰击呢?"达斯、库林斯基和利恩想知道,超导量子设备是否可以重新设计为热化暗物质探测器。根据他们的计算,激活量子传感器所需的最小能量足够低,约为千分之一电子伏特,因此它可以探测到低能量的银河系暗物质以及悬浮在地球周围的热化暗物质粒子。当然,这并不意味着暗物质是量子设备失灵的罪魁祸首只是说它是可能的,下一步就是要弄清楚他们能否以及如何将敏感的量子设备变成暗物质探测器。因此,有几件事需要考虑。首先,也许有更好的材料来制造这种装置。利恩说:"我们一开始考虑的是铝,这只是因为铝可能是迄今为止用于探测器的特性最好的材料。但事实可能证明,对于我们正在研究的质量范围和我们想要使用的探测器类型,也许有更好的材料。"利恩说,还有一种可能性是,热化暗物质与量子设备的相互作用不会像银河系暗物质被怀疑与直接探测设备的相互作用那样。在这项研究中只是考虑了暗物质进入并直接弹开探测器的简单情况,但它还可以做很多其他事情。例如,其他粒子可能与暗物质相互作用,改变探测器中粒子的分布方式。"这就是在 SLAC 工作的好处之一。我们确实有相当多样化的小组在从事许多不同的科学研究,我觉得这个项目是 SLAC 研究的一个非常好的协同效应。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

: 暗物质占据宇宙大部分质量的神秘物质,可能是由被称为引力子的大质量粒子组成,它们在宇宙大爆炸后突然出现。新理论,这些假想粒子

-- : 暗物质占据宇宙大部分质量的神秘物质,可能是由被称为引力子的大质量粒子组成,它们在宇宙大爆炸后突然出现。新理论,这些假想粒子可能是来自额外维的“宇宙难民”。研究人员的计算表明,这些粒子的量可能恰好可以解释暗物质,暗物质只能通过其对普通物质的引力而被“看到”。研究合作者、法国里昂大学的物理学家 Giacomo Cacciapaglia 表示:“大质量引力子是由早期宇宙中的普通粒子碰撞产生的。这个过程被认为太罕见了,因此大质量引力子无法成为暗物质的候选对象。”但在 月发表在《物理评论快报》期刊上的 中,Cacciapaglia 与韩国高丽大学的物理学家 Haiying Cai 和 Seung J. Lee 共同发现,早期宇宙产生的引力子足以解释我们目前在宇宙中探测到的所有暗物质。 研究发现,如果引力子存在,它们的质量将小于 MeV ,因此不会超过电子质量的两倍。这个质量水平远低于希格斯玻色子为普通物质产生质量的尺度这是该模型产生足够多引力子以解释宇宙中所有暗物质的关键。他们在寻找额外维的证据时发现了这些假设的引力子,物理学家怀疑额外维和已观察到的空间的三个维度以及第四维度时间一起存在。在研究团队的理论中,当引力通过额外维传播时,会在我们的宇宙中以大质量引力子的形式出现。但是这些粒子只会与普通物质微弱地相互作用,而且只能通过引力作用。这种描述与我们所知道的暗物质惊人地相似,暗物质不与光相互作用,但是它们的引力影响在宇宙中的任何地方都能感受到。如这种引力影响正是阻止星系飞散的原因。Cacciapaglia 表示:“大质量引力子作为暗物质粒子的主要优点在于它们只在引力作用下相互作用,因此它们可以躲开检测其存在的尝试。”

封面图片

中子星碰撞事件GW170817帮助揭开暗物质之谜

中子星碰撞事件GW170817帮助揭开暗物质之谜 两颗正在合并的中子星的艺术家插图。资料来源:NSF/LIGO/索诺玛州立大学/A. Simonnet类轴子粒子研究文理学院的物理学家布帕尔-德夫(Bhupal Dev)利用这次中子星合并的观测结果天文学界将这一事件命名为GW170817得出了关于类轴子粒子的新约束条件。这些假想粒子尚未被直接观测到,但它们出现在标准物理学模型的许多扩展中。轴子和类轴子粒子是构成科学家至今无法解释的宇宙中部分或全部"缺失"物质或暗物质的主要候选粒子。至少,这些相互作用微弱的粒子可以作为一种门户,将人类所知的可见部分与宇宙中未知的黑暗部分连接起来。《物理评论快报》(Physical Review Letters)上这项研究的第一作者、该大学麦克唐纳空间科学中心(McDonnell Center for the Space Sciences)的研究员德夫说:"我们有充分的理由怀疑,超越标准模型的新物理学可能就潜伏在不远处。"中子星合并的启示当两颗中子星合并时,会在短时间内形成一个高温、高密度的残余物。德夫说,这个残余物是产生奇异粒子的理想温床。残余物会在一秒钟内变得比单个恒星热得多,然后根据初始质量的不同,沉淀为一颗更大的中子星或黑洞。在这幅动画中,注定要灭亡的中子星呼啸着走向灭亡,它代表了在 GW170817 发生九天后观测到的现象。图片来源:美国宇航局戈达德太空飞行中心/CI 实验室这些新粒子悄无声息地逃离了碰撞的碎片,在远离其源头的地方,可以衰变成已知的粒子,通常是光子。德夫和他的团队(包括华盛顿大学校友史蒂文-哈里斯(现为印第安纳大学 NP3M 研究员)以及让-弗朗索瓦-福尔廷、库弗-辛哈和张永超)发现,这些逃逸的粒子会产生独特的电磁信号,可以被美国宇航局的费米-LAT 等伽马射线望远镜探测到。研究小组分析了这些电磁信号的光谱和时间信息,确定他们可以将这些信号与已知的天体物理背景区分开来。然后,他们利用费米-LAT关于GW170817的数据,推导出轴子-光子耦合作为轴子质量函数的新约束条件。这些天体物理约束与实验室实验(如轴子暗物质实验(ADMX))的约束相辅相成,后者探测的是轴子参数空间的不同区域。粒子物理学的未来前景未来,科学家们可以利用现有的伽马射线太空望远镜(如费米-LAT)或拟议中的伽马射线任务(如华盛顿大学领导的先进粒子-天体物理学望远镜(APT)),在中子星碰撞期间进行其他测量,帮助提高他们对类轴心粒子的理解。德夫说:"中子星合并等极端天体物理环境为我们寻找轴子等暗部门粒子提供了新的机会之窗,轴子可能是了解宇宙中缺少的85%物质的关键。"编译自/scitechdaily ... PC版: 手机版:

封面图片

跨学科合作将看不见的暗物质变成看得见的光

跨学科合作将看不见的暗物质变成看得见的光 左侧星系团,右侧可见暗物质环。资料来源:NASA、ESA、M. J. Jee 和 H. Ford(约翰霍普金斯大学)为了揭开它的神秘面纱,科学家们进行了数次实验,但尽管科学家们进行了数十年的探索,仍然一无所获。现在,我们正在美国耶鲁大学进行的新实验提供了一种新方法。自古以来,暗物质就一直存在于宇宙中,将恒星和星系连接在一起。它无形而微妙,似乎不会与光或任何其他物质发生相互作用。事实上,它一定是一种全新的物质。粒子物理学的标准模型是不完整的,这是一个问题。我们必须寻找新的基本粒子。令人惊讶的是,标准模型的同样缺陷却为我们提供了新粒子可能藏身之处的宝贵提示。以中子为例。它与质子一起构成原子核。尽管中子总体上是中性的,但该理论认为它是由三个带电的组成粒子(称为夸克)构成的。正因为如此,我们会发现中子的某些部分带正电,而另一些部分则带负电这意味着它具有物理学家所说的电偶极矩。然而,许多测量它的尝试都得到了同样的结果:它太小了,无法被探测到,它又成了一个幽灵。我们谈论的不是仪器的不足,而是一个必须小于百亿分之一的参数。它是如此微小,以至于人们怀疑它是否可能完全为零。然而,在物理学中,数学上的"零"总是一个强有力的陈述。上世纪 70 年代末,粒子物理学家罗伯托-佩奇和海伦-奎恩(以及后来的弗兰克-威尔切克和史蒂文-温伯格)试图将理论与证据结合起来。他们认为,也许这个参数并不为零。相反,它是一个在宇宙大爆炸后慢慢失去电荷、演变为零的动态量。理论计算表明,如果发生了这样的事件,它一定会留下许多轻盈、诡异的粒子。因为它们可以"清除"中子问题,所以被冠以"axions"(一种洗涤剂品牌)之名。更有甚者。如果轴子是在早期宇宙中产生的,那么它们从那时起就一直存在。最重要的是,它们的特性符合暗物质的所有预期。由于这些原因,轴子已成为暗物质最受欢迎的候选粒子之一。轴子只会与其他粒子产生微弱的相互作用。然而,这意味着它们仍会发生一些相互作用。看不见的轴子甚至可以转化为普通粒子,包括讽刺的是光子,光的本质。在特殊情况下,比如存在磁场时,这种情况可能会发生。这对实验物理学家来说简直是天赐良机。许多实验都试图在实验室的受控环境中唤起轴子幽灵。例如,有些实验旨在将光转化为轴子,然后在墙的另一侧将轴子重新转化为光。目前,最灵敏的方法是利用一种名为"光镜"的装置,瞄准弥漫在银河系(进而地球)中的暗物质光环。它是一个浸没在强磁场中的导电空腔;前者捕捉我们周围的暗物质(假设是轴子),后者诱导其转化为光。其结果是在空腔内出现电磁信号,并根据轴子质量以特征频率振荡。该系统的工作原理类似于接收无线电。需要对其进行适当调整,以截取我们感兴趣的频率。实际上,腔体的尺寸会发生变化,以适应不同的特征频率。如果轴心和空腔的频率不匹配,就像把收音机调错频道一样。强力磁铁被移至耶鲁大学实验室。资料来源:耶鲁大学遗憾的是,我们寻找的频道无法提前预测。别无选择下只能扫描所有可能的频率。这就好比用一台老式收音机在茫茫白噪声中寻找一个电台大海捞针,每次转动频率旋钮都要变大或变小。然而,这些并不是唯一的挑战。宇宙学指出,数十千兆赫是轴子搜索的最新、最有希望的前沿领域。由于更高的频率需要更小的腔体,探索这一区域需要的腔体太小,无法捕捉到有意义的信号量。新的实验正试图寻找替代路径。我们的轴心纵向等离子体光镜(阿尔法)实验使用了一种基于超材料的新概念腔体。超材料是一种复合材料,具有不同于其组成成分的整体特性它们超越了各部分的总和。一个充满导电棒的空腔,在体积几乎没有变化的情况下,其特征频率仿佛小了一百万倍。这正是我们所需要的。此外,导电棒还提供了一个内置的、易于调节的调谐系统。目前,我们正在建设该装置,几年后就可以采集数据。这项技术前景广阔。它的开发是固态物理学家、电气工程师、粒子物理学家甚至数学家通力合作的结果。尽管轴子如此难以捉摸,但它正在推动着进步,任何幽灵都无法夺走它。作者:Andrea Gallo Rosso,斯德哥尔摩大学物理学博士后。改编自最初发表在《对话》上的一篇文章。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

欧洲核子研究中心实验室再现物质/反物质黑洞喷流

欧洲核子研究中心实验室再现物质/反物质黑洞喷流 Fireball合作小组利用欧洲核子研究中心的HiRadMat设施产生了一种物质和反物质喷流的模拟,这种喷流从一些黑洞和中子星中喷涌而出。在欧洲核子研究中心的 HiRadMat 设备上,研究人员制造出了一束高密度电子-正电子等离子体束,模拟了来自黑洞的天体物理喷流,为研究太空现象提供了新的视角。这些实验有助于用真实世界的数据验证理论模型,为深入了解黑洞喷流等宇宙事件铺平道路。潜入一个活跃星系的中心,你会发现一个超大质量黑洞正在吞噬周围的物质。在大约十分之一的此类星系中,黑洞还会以接近光速的速度喷射出物质射流。这种相对论黑洞喷流被认为包含了电子对及其反物质等价物正电子的等离子体等成分。这种相对论电子-正电子等离子体被认为会影响黑洞及其环境的动力学和能量预算。但究竟是如何发生的,人们仍然知之甚少,因为既很难用天文观测来测量等离子体,也很难用计算机程序来模拟它。在最近发表于《自然-通讯》(Nature Communications)的一篇论文中,查尔斯-阿罗史密斯(Charles Arrowsmith)和火球合作项目的同事们报告了他们是如何利用欧洲核子研究中心(CERN)的 HiRadMat 设备产生一束电子-正电子等离子体相对论束,从而在实验室实验中对这种介质进行详细研究的。活动星系半人马座 A,等离子体喷流从其中央黑洞喷出。资料来源:ESO/WFI(光学),MPIfR/ESO/APEX/A.Weiss et al.(亚毫米波)、NASA/CXC/CfA/R.天体物理现象的实验室复制在不同类型的实验室配备的高功率激光设施可以通过多种方式产生电子-正电子对的相对论束。然而,现有的方法都无法产生维持等离子体所需的电子-正电子对数量,而等离子体是一种物质状态,其中各组成粒子之间的连接非常松散。如果不能维持等离子体,研究人员就无法研究这些黑洞喷流的类似物在穿过相当于星际介质的实验室时是如何变化的。这项研究是解释地面和太空望远镜观测结果的关键。阿罗史密斯及其同事在欧洲核子研究中心的 HiRadMat 设备上找到了满足这些要求的方法。他们的方法是从实验室的超级质子同步加速器(Super Proton Synchrotron)中在仅纳秒级的时间内提取出高达三千亿个质子,然后将它们发射到石墨和钽靶上,在此过程中,一连串的粒子相互作用产生了大量的电子-正电子对。 通过使用一套仪器测量产生的相对论电子-正电子束,并将结果与复杂的计算机模拟结果进行比较,阿罗史密斯及其合作者发现,电子-正电子束中的电子-正电子对数量超过十万亿对,是以前的十倍到百倍,首次超过了维持等离子体状态所需的数量。阿罗史密斯说:"电子-正电子等离子体被认为在天体物理喷流中扮演着重要角色,但这些等离子体和喷流的计算机模拟从未在实验室中进行过测试。实验室实验是验证模拟的必要条件,因为看似合理的模拟计算简化有时会导致截然不同的结论"。该结果是火球合作项目在 HiRadMat 进行的一系列实验的第一个结果。"这些实验的基本理念是在实验室中重现天体物理现象的微观物理学,例如来自黑洞和中子星的喷流,"论文合著者、首席研究员吉安卢卡-格雷戈里(Gianluca Gregori)说。"我们对这些现象的了解几乎完全来自天文观测和计算机模拟,但望远镜无法真正探测微观物理,模拟也涉及近似值。像这样的实验室实验是这两种方法之间的桥梁。"阿罗史密斯及其同事在 HiRadMat 等离子体实验中的下一个目标是让这些强大的射流在一米长的等离子体中传播,并观察它们之间的相互作用是如何产生磁场使射流中的粒子加速的这是高能天体物理学中最大的难题之一。"火球实验是 HiRadMat 最新增加的实验项目之一,"该设施的运营经理 Alice Goillot 说。"我们期待着利用欧洲核子研究中心加速器综合体的独特性能继续重现这些罕见的现象。"编译自/scitechdaily ... PC版: 手机版:

封面图片

最早的星系可能比以前认为的更小更亮 颠覆暗物质理论

最早的星系可能比以前认为的更小更亮 颠覆暗物质理论 在过去的一年半里,詹姆斯-韦伯太空望远镜(James Webb Space Telescope)拍摄到了宇宙大爆炸后不久形成的遥远星系的惊人图像,让科学家们第一次看到了宇宙的雏形。现在,一组天体物理学家提高了要求:找到时间起点附近最微小、最明亮的星系,否则科学家们将不得不彻底重新思考他们关于暗物质的理论。由加州大学洛杉矶分校天体物理学家领导的研究小组进行了模拟,追踪了宇宙大爆炸后小星系的形成过程,并首次将以前被忽视的气体与暗物质之间的相互作用纳入其中。他们发现,在不考虑这些相互作用的典型模拟中,所形成的星系非常微小、明亮得多,而且形成速度更快,反而显示出更暗的星系。矮星系在宇宙研究中的重要性小星系,也叫矮星系,遍布整个宇宙,通常被认为是最早的星系类型。因此,研究宇宙起源的科学家对小星系特别感兴趣。但是,他们发现的小星系并不总是和他们认为应该发现的星系一致。那些最靠近银河系的星系旋转得更快,或者密度没有模拟的那么高,这表明模型可能遗漏了一些东西,比如这些气体-暗物质的相互作用。发表在 《天体物理学杂志通讯》上的这项新研究通过加入暗物质与气体的相互作用改进了模拟,并发现这些暗星系在宇宙历史的早期可能比预期的要亮得多,当时它们刚刚开始形成。作者建议科学家利用韦伯望远镜等天文望远镜寻找比预期亮得多的小星系。如果他们只找到微弱的星系,那么他们关于暗物质的一些想法可能就是错误的。斯蒂芬五重奏(Stephan's Quintet)是由五个星系组成的视觉组合,由詹姆斯-韦伯太空望远镜提供的近千个独立图像文件合成。加州大学洛杉矶分校的天体物理学家认为,如果冷暗物质理论是正确的,韦伯望远镜应该能发现宇宙早期微小而明亮的星系。图片来源:NASA、ESA、CSA、STScI难以捉摸的暗物质本质暗物质是一种不与电磁或光相互作用的假想物质。因此,它无法用光学、电学或磁学进行观测。但暗物质确实与引力相互作用,人们从暗物质对普通物质构成所有可观测宇宙的物质的引力效应中推断出暗物质的存在。尽管宇宙中 84% 的物质被认为是由暗物质构成的,但它从未被直接探测到过。所有星系都被一圈巨大的暗物质光环所包围,科学家们认为暗物质对星系的形成至关重要。天体物理学家用来理解星系形成的"标准宇宙学模型"描述了宇宙早期的暗物质团块如何通过引力吸引普通物质,导致恒星的形成,并创造出我们今天看到的星系。由于大多数暗物质粒子(被称为冷暗物质)的运动速度被认为比光速慢得多,因此这一积累过程是逐渐发生的。了解星系形成的理论进展但是在130多亿年前,也就是第一批星系形成之前,由来自宇宙大爆炸的氢气和氦气组成的普通物质和暗物质在相对运动。气体以超音速流过移动速度较慢的暗物质的密集区,这些暗物质本应该把气体拉进来形成星系。"事实上,在不考虑流的模型中,这正是发生的情况,"加州大学洛杉矶分校博士生、论文第一作者克莱尔-威廉姆斯说。"气体被暗物质的引力吸引,形成密度大到可以发生氢聚变的团块和结块,从而形成像我们太阳这样的恒星。"但威廉姆斯和"超音速项目"团队的合著者(由加州大学洛杉矶分校物理学和天文学教授斯马达尔-纳奥兹领导的一组来自美国、意大利和日本的天体物理学家组成)发现,如果他们在模拟中加入暗物质和普通物质之间不同速度的流效应,气体就会落在远离暗物质的地方,无法立即形成恒星。数百万年后,当积累的气体落回星系时,恒星的形成就会同时爆发。由于这些星系在一段时间内比普通的小星系拥有更多年轻、炽热、发光的恒星,因此它们要亮得多。威廉姆斯说:"虽然流星抑制了最小星系中恒星的形成,但它也促进了矮星系中恒星的形成,使它们比宇宙中没有流星的区域更加明亮。我们预测,韦伯望远镜将能够发现宇宙中因这种速度而变得更加明亮的星系区域。事实上,它们应该如此明亮,这可能会让望远镜更容易发现这些小星系,而这些星系通常在宇宙大爆炸后 3.75 亿年才极难被发现。"由于暗物质是无法直接研究的,因此在早期宇宙中寻找明亮的星系斑块可以为暗物质理论提供有效的检验,而这种检验迄今为止还没有结果。"在早期宇宙中发现成片的小而明亮的星系将证实我们的冷暗物质模型是正确的,因为只有两种物质之间的速度才能产生我们正在寻找的星系类型,"霍华德和阿斯特里德-普雷斯顿天体物理学教授诺兹说。"如果暗物质的行为不像标准的冷暗物质,不存在流效应,那么这些明亮的矮星系就不会被发现,我们就需要回到绘图板上去。"编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人