MIT新模型可以快速识别和确定不应同时服用的药物

MIT新模型可以快速识别和确定不应同时服用的药物 麻省理工学院和其他研究人员开发了一种多管齐下的策略,以识别不同药物所使用的转运体。他们的方法同时利用了组织模型和机器学习算法,已经发现一种常用抗生素和一种血液稀释剂会相互干扰。资料来源:麻省理工学院,何塞-路易斯-奥利瓦雷斯麻省理工学院、布里格姆妇女医院和杜克大学的研究人员现已开发出一种多管齐下的策略,用于识别不同药物所使用的转运体。他们的方法同时利用了组织模型和机器学习算法,已经发现一种常用抗生素和一种血液稀释剂会相互干扰。"建立吸收模型的挑战之一是药物会受到不同转运体的影响。"麻省理工学院机械工程副教授、布里格姆妇女医院胃肠病学家、该研究的资深作者乔瓦尼-特拉韦索(Giovanni Traverso)说:"这项研究的目的在于我们如何模拟这些相互作用,这可以帮助我们使药物更安全、更有效,并预测到目前为止可能难以预测的潜在毒性。"更多地了解哪些转运体有助于药物通过消化道,还有助于药物开发人员通过添加辅料来增强药物与转运体的相互作用,从而提高新药的可吸收性。麻省理工学院前博士后史云华和丹尼尔-雷克是这项研究的主要作者,他们的研究成果最近发表在《自然-生物医学工程》杂志上。药物运输先前的研究已经确定了消化道中帮助药物通过肠粘膜的几种转运体。其中最常用的三种是 BCRP、MRP2 和 PgP,它们也是新研究的重点。在这项研究中,特拉韦索和他的同事采用了他们在2020年开发的一种组织模型来测量特定药物的吸收性。这种实验装置基于在实验室培育的猪肠组织,可用于将组织系统地暴露在不同的药物配方中,并测量它们的吸收情况。为了研究单个转运体在组织中的作用,研究人员使用名为siRNA的短RNA来敲除每个转运体的表达。在每个组织切片中,他们敲除了不同的转运体组合,从而研究了每种转运体如何与多种不同药物相互作用。"有几条路可以让药物通过组织,但你不知道是哪一条路。我们可以分别关闭这几条路,以便弄清楚,如果我们关闭了这条路,药物还能通过吗?如果答案是肯定的,那么它就没有使用那条路,"特拉韦索说。研究人员使用该系统测试了 23 种常用药物,从而确定了每种药物使用的转运体。然后,他们根据这些数据以及来自几个药物数据库的数据训练了一个机器学习模型。根据药物化学结构之间的相似性,该模型学会了预测哪些药物会与哪些转运体发生相互作用。利用这一模型,研究人员分析了一组新的 28 种常用药物以及 1595 种实验药物。这一筛选得出了近 200 万个潜在药物相互作用的预测结果。其中包括预测抗生素强力霉素可能与常用的血液稀释剂华法林发生相互作用。多西环素还被预测会与治疗心力衰竭的地高辛、抗癫痫药物左乙拉西坦和免疫抑制剂他克莫司发生相互作用。确定相互作用为了验证这些预测,研究人员研究了约 50 名患者的数据,这些患者在被处方强力霉素时已经服用了这三种药物中的一种。这些数据来自马萨诸塞州总医院和布里格姆妇女医院的病人数据库,数据显示,当给已经服用华法林的病人服用强力霉素时,病人血液中的华法林水平会升高,然后在停止服用强力霉素后又会下降。这些数据还证实了模型的预测,即多西环素的吸收会受到地高辛、左乙拉西坦和他克莫司的影响。此前,只有他克莫司一种药物被怀疑会与强力霉素发生相互作用。特拉韦索说:"这些都是常用药物,我们是第一个使用这种加速的硅学和体外模型来预测这种相互作用的人。这种方法让你有能力了解同时使用这些药物的潜在安全影响"。除了识别已在使用的药物之间可能存在的相互作用,这种方法还可应用于正在研发的药物。利用这项技术,药物开发人员可以调整新药分子的配方,以防止与其他药物发生相互作用或提高其可吸收性。Vivtex 是麻省理工学院前博士后托马斯-冯-埃拉赫(Thomas von Erlach)、麻省理工学院研究所教授罗伯特-朗格(Robert Langer)和特拉韦索(Traverso)于 2018 年共同创立的一家生物技术公司,旨在开发新型口服给药系统。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

MIT研究人员解释说话和吸气不能同时进行的原因

MIT研究人员解释说话和吸气不能同时进行的原因 “当你需要吸气时,你必须停止发声。我们发现控制发声的神经元接收到来自呼吸节奏发生器的直接抑制输入,”麻省理工学院脑与认知科学教授、麻省理工学院麦戈文脑研究所成员、该研究的资深作者Fan Wang说。杜克大学研究生、麻省理工学院访问学者Jaehong Park是这项研究的主要作者,该研究发表在今天的《Science》杂志上。该论文的其他作者包括麻省理工学院的技术助理Seonmi Choi和Andrew Harrahill,前麻省理工学院的研究科学家Jun Takatoh,以及杜克大学的研究人员Shengli Zhao和Bao-Xia Han。发声控制声带位于喉部,是两条肌肉带,可以打开和关闭。当它们大部分闭合或内收时,从肺部呼出的空气通过声带时会产生声音。麻省理工学院的研究小组开始研究大脑是如何控制这种发声过程的,他们使用了一个小鼠模型。小鼠通过一种独特的口哨机制,通过几乎闭合的声带之间的一个小洞呼出空气,从而发出超声波(USVs)的声音。“我们想了解控制声带内收的神经元是什么,然后这些神经元是如何与呼吸回路相互作用的?”Wang说。为了弄清楚这一点,研究人员使用了一种技术,可以让他们绘制神经元之间的突触连接。他们知道声带内收是由喉部运动神经元控制的,所以他们开始往回追溯,寻找支配这些运动神经元的神经元。这表明,输入的一个主要来源是后脑区域的一组运动前神经元,称为后歧义核(RAm)。先前的研究表明,这个区域与发声有关,但不知道RAm的哪一部分是必需的,也不知道它是如何发声的。研究人员发现,这些突触跟踪标记的RAm神经元在USVs期间被强烈激活。这一观察结果促使研究小组使用一种活动依赖方法来瞄准这些发声特异性RAm神经元,称为RAmVOC。他们使用化学遗传学和光遗传学来探索如果他们沉默或刺激他们的活动会发生什么。当研究人员阻断RAmVOC神经元时,小鼠不再能够产生USVs或任何其他类型的发声。他们的声带没有闭合,腹部肌肉也没有收缩,就像他们通常在呼气发声时所做的那样。相反,当RAmVOC神经元被激活时,声带关闭,小鼠呼气,并产生USVs。然而,如果刺激持续两秒或更长时间,这些USVs就会被吸入打断,这表明这个过程是由大脑中调节呼吸的同一部分控制的。“呼吸是生存的需要,”Wang说。“尽管这些神经元足以引起发声,但它们是在呼吸的控制下,这可以超越我们的光遗传刺激。”节奏的一代额外的突触映射显示,脑干部分称为pre-Bötzinger复合物的神经元作为吸入的节奏发生器,为RAmVOC神经元提供直接的抑制性输入。“pre-Bötzinger复合体自动地、连续地产生吸入节律,该区域的抑制神经元投射到这些发声前运动神经元上,基本上可以关闭它们,”Wang说。这确保了呼吸仍然是语言产生的主导,我们在说话时必须停下来呼吸。研究人员认为,尽管人类的语言产生比小鼠的发声更复杂,但他们在小鼠身上发现的回路在人类的语言产生和呼吸中起着保守的作用。“尽管小鼠和人类发声的确切机制和复杂性确实不同,但基本的发声过程,即发声,需要声带闭合和呼气,在人类和小鼠中是共享的,”Park说。研究人员现在希望研究其他功能,如咳嗽和吞咽食物可能会受到控制呼吸和发声的大脑回路的影响。 ... PC版: 手机版:

封面图片

GLP-1减肥药物被发现可用于治疗阿尔茨海默氏症和帕金森氏症

GLP-1减肥药物被发现可用于治疗阿尔茨海默氏症和帕金森氏症 这项研究的合著者、多伦多大学医学系教授丹尼尔-德鲁克(Daniel Drucker)说:"GLP-1 药物真正有趣的一点是,除了控制血糖和体重之外,它们似乎还能减少慢性代谢疾病的并发症。我们从临床研究中得知,GLP-1 能在人体内发挥这些神奇的作用,但我们并不完全清楚它是如何起作用的"。胰高糖素样肽-1(GLP-1)受体激动剂已成为继 mRNA 疫苗之后最受关注的医学科学发展成果。塞马鲁肽和替扎帕肽的品牌名称包括 Ozempic、Wegovy 和 Mounjaro,它们最初用于有效治疗 2 型糖尿病,但后来作为一种新的、备受推崇的减肥药物而声名鹊起。德鲁克和团队相信,这并不是他们"超能力"的极限,他们对炎症与 GLP-1 药物之间的关系非常感兴趣。研究人员发现了一种新的、迷人的、可能改变生命的与其他器官的相互作用,尤其是与大脑的相互作用。德鲁克说:"奇怪的是,在所有这些GLP-1似乎起作用的其他器官中找不到很多GLP-1受体。"研究小组发现,在患有炎症(由免疫系统对细菌细胞壁成分或细菌浆液的反应引起)的小鼠身上,GLP-1 激动剂能减轻病情,但只有在大脑中的受体没有被阻断时才会如此。这证明了 GLP-1 药物与炎症和大脑-免疫系统轴相互作用的一种新方式,而与它们的其他已知益处无关。鲁能菲尔德-坦能鲍姆研究所所长安妮-克劳德-金格拉斯(Anne-Claude Gingras)说:"当科学界当之无愧地庆祝GLP-1激动剂及其影响时,还有许多未知数。这项研究加深了我们对新陈代谢以及调节新陈代谢的复杂大脑免疫网络的理解。"在阿尔茨海默氏症和帕金森氏症中,病理蛋白β-淀粉样蛋白和α-突触核蛋白分别与某些受体相互作用,引发多种炎症途径。如果能用 GLP-1 受体激动剂来调节这些蛋白和受体的活性,就能有效治疗这些退行性疾病中的神经炎症。研究小组现在希望确定哪些脑细胞与 GLP-1 以及心脏、肝脏和肾脏的其他炎症模型发生了相互作用,这为治疗这些器官的相关慢性疾病带来了巨大希望。这项研究发表在《细胞代谢》杂志上。 ... PC版: 手机版:

封面图片

谷歌 DeepMind 发布 AlphaFold 3:可预测药物如何与蛋白质相互作用

谷歌 DeepMind 发布 AlphaFold 3:可预测药物如何与蛋白质相互作用 谷歌 DeepMind 公司近日推出了 AlphaFold 3,通过预测所有生命分子是如何相互作用的,加速寻找新药和探索新的治疗方法,治疗癌症、帕金森氏症、疟疾、肺结核等疾病。 AlphaFold 3 能够预测人体每个细胞分子的复杂形状,以及如何相互连接,以及其中最小的变化如何影响可能导致疾病的生物功能。AlphaFold 3 能够生成活细胞及其联合 3D 结构,预测数百万种组合的相互作用,准确率要比现有常规方法高 50%,并且可以在几秒钟内生成通常需要数月或数年才能完成的预测。 科学家和医学专家希望借助 AlphaFold 3,深入研究抗体和药物的相互作用,寻找更好的治疗方法。DeepMind 创始人兼首席执行官 Demis Hassabis 表示,该项目为研究人员提供了一套比较完整的“工具集”,不仅大幅提高研发新药物的速度,而且可以改变人类对生物世界的理解。来源 , 频道:@kejiqu 群组:@kejiquchat

封面图片

Google DeepMind 推出可预测所有生命分子的结构和相互作用的 AlphaFold 3

Google DeepMind 推出可预测所有生命分子的结构和相互作用的 AlphaFold 3 Google DeepMind 今天在博客中介绍了和 Isomorphic Labs 共同开发的 AlphaFold 3,一种新型生命科学 AI 模型。该模型在准确预测蛋白质、DNA、RNA、配体等的结构基础之上,新增了对其相互作用的预测,相比当前最先进的方法至少有 50% 以上的提升, Google 希望它能够改变对生物世界和药物发现的理解。 该模型的论文已经发表在最新一期自然杂志上。现在,科学家可以通过新推出的易于使用的研究工具 AlphaFold Server 免费使用该模型大部分功能,包括免费的 2 亿个蛋白质结构的数据库。 ,

封面图片

MIT研究人员发现由光而不是热引起的蒸发现象

MIT研究人员发现由光而不是热引起的蒸发现象 换句话说,虽然温度的波动会产生蒸发现象,但仅凭光束的力量,水也一直在因此变成水蒸气。科学家们将这一过程称为"光分子效应",源自爱因斯坦在 1905 年对光电效应的解释。普渡大学机械工程学教授阮秀林说:"由光而不是热引起蒸发的发现为光与水的相互作用提供了新的颠覆性知识。"阮秀林没有参与麻省理工学院的研究,该研究发表在《美国国家科学院院刊》(PNAS)上。他补充说:"这可以帮助我们对阳光如何与云、雾、海洋和其他自然水体相互作用以影响天气和气候有新的认识。具有重大的潜在实际应用价值,例如太阳能驱动的高性能海水淡化。这项研究属于罕见的真正革命性的发现,这些发现不会立即被社会广泛接受,而是需要时间,有时甚至是很长时间才能得到证实。"研究人员说,光引起的蒸发和热引起的蒸发之间的区别看似不大,但它不仅会对未来蒸发项目的执行方式产生重大影响,而且还能解释涉及云层的一个长期存在的差异。大约八十年来,对云层吸收阳光的方式进行的测量经常表明,云层吸收的阳光比物理学认为可能吸收的更多。对这些云层产生的光分子效应它导致了额外的、意想不到的蒸发可能有助于解决这个难题。研究小组利用实验室设备向水中发射激光,观察光的蒸发效应 布莱斯-维克马克由于光基蒸发的发现非常惊人,麻省理工学院的研究人员进行了 14 次不同的验证实验,所有实验都支持这一发现。在使用激光进行实验的过程中,他们发现,当被称为横向磁偏振的特定偏振光以 45° 角照射到水面时,蒸发效果最强。绿光的蒸发效果也最强,这让研究小组感到惊讶,因为绿光是使水看起来最透明的颜色,因为它与水的相互作用最小。"手稿中的观察结果指出了一种新的物理机制,它从根本上改变了我们对蒸发动力学的看法,"佐治亚理工学院机械工程副教授 Shannon Yee 说,他也没有参与这项工作。"谁能想到,我们还在学习像水蒸发这样的常识呢?"已经有一些公司与研究人员接触,认为光分子效应可以帮助他们的业务,其中包括一家公司希望将其用于纸厂的纸张干燥,另一家公司则希望利用这一过程蒸发糖浆。虽然这些应用可能是可行的,但研究人员认为,更多的工作将使他们的研究成果成倍受益。研究报告的合著者、麻省理工学院动力工程教授陈刚说:"这种现象应该非常普遍,我们的实验实际上只是一个开始。证明和量化这种效应所需的实验非常耗时。从了解水本身,到扩展到其他材料、其他液体甚至固体,都存在很多变数。" ... PC版: 手机版:

封面图片

科学家利用固态自旋量子传感器研究了电子自旋之间新的速度相关相互作用

科学家利用固态自旋量子传感器研究了电子自旋之间新的速度相关相互作用 标准模型是粒子物理学中一个非常成功的理论框架,描述了基本粒子和四种基本相互作用。然而,标准模型仍然无法解释当前宇宙学中的一些重要观测事实,例如暗物质和暗能量。一些理论认为,新粒子可以充当传播者,在标准模型粒子之间传递新的相互作用。目前,缺乏关于自旋速度相关新相互作用的实验研究,特别是在相对较小的力距离范围内,几乎不存在实验验证。研究人员设计了一个配备两颗钻石的实验装置。使用化学气相沉积在每颗钻石表面制备了高质量的氮空位 (NV) 集成。一个NV系综中的电子自旋用作自旋传感器,而另一个则充当自旋源。研究人员通过相干地操纵两个金刚石NV系综的自旋量子态和相对速度,在微米尺度上寻找电子速度依赖性自旋之间的新相互作用效应。首先,他们使用自旋传感器来表征磁偶极子与自旋源的相互作用作为参考。然后,通过调制自旋源的振动并执行锁定检测和相位正交分析,他们测量了SSIVD。研究的实验结果。图片来源:DU et al.对于两种新的相互作用,研究人员分别在小于1厘米和小于1公里的力范围内进行了首次实验检测,获得了宝贵的实验数据。正如编辑所说,“这些结果为量子传感界带来了新的见解,以利用固态自旋的紧凑、灵活和敏感特征来探索基本相互作用。该团队由中国科学院中国科学技术大学杜江峰院士和邢荣教授领导,浙江大学焦满教授合作。更多信息:Yue Huang 等人,与固态量子传感器的奇异自旋-自旋-速度相关相互作用的新约束,物理评论快报 (2024)。DOI: 10.1103/PhysRevLett.132.180801 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人