掺入石蜡制成的相变混凝土无需盐或铲子即可融化冰雪

掺入石蜡制成的相变混凝土无需盐或铲子即可融化冰雪 根据美国交通部(DOT)的数据,70% 以上的道路都在积雪地区。积雪和结冰会降低路面摩擦力和车辆可操作性,导致驾驶员减速,增加车祸风险。积雪阻塞的车道和道路还会降低道路通行能力,增加行车时间。交通部称,地方和州政府机构每年在冰雪控制作业上的花费超过 23 亿美元,此外,修复冰雪造成的基础设施损坏的费用也高达数百万美元。为防止结冰,通常会在下雪前撒盐,但高浓度的盐溶液会使混凝土或沥青老化。此外,当水渗入路面并结冰时,水会膨胀,造成内部压力并损坏路面。美国宾夕法尼亚州是众所周知的"寒冷之州",该州德雷克塞尔大学的研究人员在一项新的研究中展示了他们的自加热混凝土:一种解决积雪覆盖道路以及清理和维护道路相关成本的潜在方法。德雷克塞尔大学先进基础设施材料(AIM)实验室首席研究员、该研究的通讯作者之一阿米尔-法纳姆(Amir Farnam)说:"延长混凝土表面[原文如此](如道路)使用寿命的一种方法是帮助它们在冬季保持高于冰点的表面温度。防止冻融,减少犁地和撒盐的需要,是防止路面老化的好办法。因此,我们的工作是研究如何在混凝土中加入特殊材料,帮助混凝土在周围环境温度降低时保持较高的表面温度。"研究人员的"特殊材料"是石蜡,这是一种所谓的相变材料,因为当它从室温下的液态变为固态时会释放热量。在之前的一项研究中,他们在热控制实验室环境中测试了相变混凝土,但在本次研究中,他们在真实世界条件下对其进行了实时测试。在混凝土板中加入石蜡的方法有两种。第一种方法是将多孔轻质骨料为增强混凝土强度而添加的小石子和鹅卵石浸没在液态石蜡中,吸收后再掺入混凝土中。第二种方法是将石蜡微胶囊直接混入混凝土中。正在室外测试的相变混凝土板 德雷塞尔大学研究人员浇筑了三块石板:两块采用了不同的石蜡掺入方法,第三块不含相变材料。自 2021 年 12 月以来,这三块石板一直放在德雷塞尔大学校园停车场旁边的室外。在头两年里,它们经历了 32 次温度降至冰点以下的冻融事件,无论降水量(即雨、细雨、雪、雨夹雪或冰雹)如何,还经历了五次降雪或一英寸以上的降雪。研究人员使用照相机和热传感器对 30 英寸 x 30 英寸(76 厘米 x 76 厘米)石板的融雪和融冰能力进行了监测。研究人员发现,当气温降至零度以下时,相变混凝土的表面温度能保持在 42 °F 至 55 °F(5.6 摄氏度至 12.8 摄氏度)长达 10 个小时。产生的热量足以以每小时约四分之一英寸的速度融化几英寸厚的积雪。法纳姆说:"我们已经证明,我们的自热混凝土能够自行融化积雪,只利用白天的环境热能而且不需要盐、铲子或加热系统的帮助。这种自热混凝土适用于美国的山区和北部地区,如宾夕法尼亚州东北部和费城,因为那里冬季有合适的供暖和制冷周期"。轻质骨料板的持续加热能力更强,可将温度维持在冰点以上长达 10 小时,而微胶囊石蜡的加热速度更快,但维持热量的时间只有石蜡的一半。研究人员指出,骨料的多孔性可能是石蜡在通常的冰点温度(42 °F)以下保持液态的原因,这意味着当温度开始下降时,石蜡板不会立即释放热能,而是一直保持到材料温度达到 39 °F/3.9 °C。这与微胶囊石蜡板形成鲜明对比,后者在温度达到 42 华氏度时就开始释放热能。Farnam 说:"我们的研究结果表明,经过相变材料处理的轻质骨料混凝土更适合在零度以下的温度条件下应用于除冰,因为它能在更大的温度范围内逐步释放热量。"研究人员说,防止混凝土表面降到冰点以下的能力将有助于防止其老化。"冻融循环、极度降温(低于冰点)和升温会导致表面尺寸膨胀和收缩,从而对其结构完整性造成压力,并随着时间的推移造成破坏性开裂和剥落,"该研究的主要作者和共同通讯作者罗宾-德布说。研究的主要作者和共同通讯作者罗宾-德布说:"虽然单凭这一点可能不会使结构退化到失效的地步,但它会造成一种脆弱性,导致我们需要避免的内部恶化问题。其中一个很有希望的发现是,使用相变材料的楼板在面临环境温度下降时能够将温度稳定在冰点以上"。研究人员指出,在积雪超过两英寸的情况下,石板的效果较差。而且,如果相变材料没有机会通过升温"充电",在冻融或积雪事件之间恢复到液态,其性能可能会降低。他们计划继续收集数据,以评估楼板的长期有效性,并研究如何采用相变材料来延长混凝土的使用寿命。"有了这些发现,我们将能够继续改进该系统,以便有朝一日对其进行优化,使其加热时间更长,融化程度更高,"Deb 说。"但令人鼓舞的是,有证据表明冻融循环明显减少,这表明与传统混凝土相比,PCM(相变材料)混凝土的冻融耐久性更强"。目前还不清楚这项研究使用的石蜡是否是合成的。使用非合成石蜡的一个问题是,石蜡是石油(原油)的副产品,是一种不可再生资源,需要密集的机械来开采和提炼。作为一种不可再生资源,石蜡不是可持续的、可生物降解的或环保的。这项研究发表在《土木工程材料期刊》上。 ... PC版: 手机版:

相关推荐

封面图片

德雷克塞尔大学的革命性混凝土能自然融化冰雪

德雷克塞尔大学的革命性混凝土能自然融化冰雪 自加热混凝土的优点据美国国家公路管理局估计,美国北部各州每年花费 23 亿美元用于除冰雪作业,并花费数百万美元用于修复因冬季天气而受损的道路。工程学院副教授阿米尔-法纳姆(Amir Farnam)博士说:"延长道路等混凝土表面使用寿命的方法之一,就是帮助它们在冬季保持高于冰点的表面温度。防止冰冻和融化,减少犁地和撒盐的需要,是防止路面老化的好方法。因此,我们的工作是研究如何在混凝土中加入特殊材料,帮助混凝土在周围环境温度降低时保持较高的表面温度。"德雷克塞尔大学的研究人员开发出一种混凝土,当气温下降时,这种混凝土可以自行升温,以融化冰雪。资料来源:德雷塞尔大学过去五年来,德雷克塞尔大学团队一直在开发耐寒混凝土混合物,目的是减少侵蚀道路和其他混凝土表面的冻结、解冻和撒盐。到目前为止,他们的自热混凝土他们以前曾报告过这种混凝土可以融化积雪并在较长时间内防止或减缓冰的形成还只是在受控实验室环境中取得了成功。在最近发表在美国土木工程学会《土木工程材料期刊》上的一篇论文中,该研究小组迈出了重要的一步,证明了自热混凝土在自然环境中的可行性。法纳姆说:"我们已经证明,我们的自热混凝土能够自行融化积雪,只利用白天的环境热能而且不需要盐、铲子或加热系统的帮助。这种自加热混凝土适用于美国的山区和北部地区,如宾夕法尼亚州东北部和费城,那里冬季有合适的供暖和制冷周期。"混凝土变暖的机理混凝土升温的秘密在于低温液态石蜡,它是一种相变材料,也就是说,当温度降低时,它从室温状态(液态)转变为固态,就会释放热量。在之前的一篇论文中,该研究小组报告说,在混凝土中加入液态石蜡会在温度降低时引发加热。他们的最新研究考察了在混凝土板中加入相变材料的两种方法,以及每种方法在室外寒冷环境中的表现。其中一种方法是用石蜡处理多孔轻质骨料(即混凝土中的鹅卵石和小石块)。骨料吸收液态石蜡后再混入混凝土中。另一种方法是将石蜡微胶囊直接混入混凝土中。德雷塞尔大学的研究人员对含有相变材料的混凝土板进行了测试,这种材料可以在气温下降时自我升温,从而融化冰雪。[从左至右:参考板、含有用相变材料处理过的轻质骨料的板、含有微胶囊相变材料的板。]资料来源:德雷塞尔大学研究人员使用每种方法浇筑了一块石板,并浇筑了不含任何相变材料的第三块石板作为对照。自 2021 年 12 月以来,所有三块板都一直暴露在室外。在最初的两年里,他们一共经历了 32 次冻融事件温度降到冰点以下,无论降水量如何以及 5 次一英寸或更大的降雪。研究人员使用摄像机和热传感器监测石板的温度和冰雪消融情况。他们报告说,在气温降至零度以下的情况下,相变石板的表面温度仍能保持在 42 至 55华氏度之间长达 10 小时。这种加热足以融化几英寸厚的积雪,融雪速度约为每小时四分之一英寸。虽然这样的温度可能不足以在需要铲雪车之前融化一场大雪,但它可以帮助路面除冰,即使在大雪天气也能提高交通安全。保持足够的温暖研究人员表示,防止地表降到冰点以下对防止老化也大有裨益。工程学院的博士生罗宾-德布(Robin Deb)说:"冻融循环,即极度降温(低于冰点)和升温,会导致表面尺寸膨胀和收缩,从而对其结构完整性造成压力,并随着时间的推移造成破坏性开裂和剥落,"他帮助领导了这项研究。工程学院博士生罗宾-德布说:"虽然单凭这一点可能不会使结构退化到失效的地步,但它会造成一种脆弱性,导致我们需要避免的内部劣化问题。其中一个很有希望的发现是,使用相变材料的楼板在面临环境温度下降时,能够将温度稳定在冰点以上"。慢而稳总体而言,经过处理的轻质骨料板在持续加热方面表现更佳可在冰点以上保持温度长达 10 个小时,而使用微胶囊相变材料的骨料板升温更快,但保持升温的时间只有后者的一半。研究人员认为,这是由于相变材料在聚合体孔隙中相对分散,而微胶囊内的相变材料则相对集中这种现象已被广泛研究。他们还注意到,骨料的多孔性可能是石蜡在通常的华氏 42 度冰点温度以下保持液态的原因。事实证明,这有利于板坯的性能,因为当温度开始下降时,材料不会立即释放热能,而是一直保持到材料温度达到华氏 39 度时才释放。相比之下,微胶囊石蜡在温度达到 42 华氏度时就开始释放热能,因此活化期相对较短。Farnam 说:"我们的研究结果表明,经过相变材料处理的轻质骨料混凝土更适合在零度以下的温度条件下应用于除冰,因为它能在更宽的温度范围内逐步释放热量。"改进空间虽然这两种应用都能将混凝土的温度提高到 53 至 55 华氏度之间,但这足以融化积雪。它们的性能受降雪前的环境气温和降雪量的影响。"我们发现,加入 PCM 的路面无法完全融化大于 2 英寸的积雪,"德布说。"不过,它能有效融化小于两英寸的积雪。融入 PCM 的路面在积雪开始融化时就开始融化。逐渐释放的热量可以有效地为路面除冰,这样就不需要在大雪来临之前预先撒盐了。"他们还指出,如果相变材料在冻融或降雪事件之间没有足够的时间通过升温来"充电",从而恢复到液态,那么它的性能可能会降低。"开展这项研究是我们了解含有相变材料的混凝土在自然界中表现的重要一步,"德布说。"有了这些发现,我们将能够继续改进该系统,以便有朝一日对其进行优化,使其加热时间更长,熔化程度更高。但令人鼓舞的是,我们看到了冻融循环显著减少的证据,这表明与传统混凝土相比,PCM 混凝土的冻融耐久性更强"。研究小组计划继续收集楼板数据,以了解相变材料的长期有效性,并研究这种方法如何延长混凝土的使用寿命。编译自:ScitechDaily ... PC版: 手机版:

封面图片

剑桥大学研究人员开发出一种生产低排放混凝土的突破性方法

剑桥大学研究人员开发出一种生产低排放混凝土的突破性方法 这种方法被研究人员称为"绝对的奇迹",它利用电弧炉(常用于钢材回收)同时回收水泥(混凝土的主要碳密集元素)。混凝土是地球上使用量仅次于水的第二大材料,其排放量约占人为二氧化碳排放总量的 7.5%。如何在满足全球需求的同时减少混凝土的排放,是全球最大的脱碳挑战之一。剑桥大学的研究人员发现,废水泥是石灰助熔剂的有效替代品,石灰助熔剂在钢材回收过程中用于去除杂质,通常最终成为一种被称为炉渣的废品。但用废旧水泥替代石灰后,最终产品是可用于制造新混凝土的再生水泥。剑桥大学的研究人员在《自然》杂志上报道了他们开发的水泥回收方法,这种方法不会给混凝土或钢材的生产增加大量成本,而且由于减少了对石灰助熔剂的需求,大大降低了混凝土和钢材的排放量。零排放的测试和潜力该项目的合作伙伴材料加工研究所(Materials Processing Institute)最近进行的测试表明,可在电弧炉(EAF)中大规模生产再生水泥,这是首次实现这一目标。如果电弧炉由可再生能源驱动,这种方法最终可以生产出零排放的水泥。剑桥大学工程系的朱利安-艾尔伍德教授是这项研究的负责人,他说:"我们与建筑行业的成员就如何减少该行业的排放量举行了一系列研讨会。这些讨论产生了很多好主意,但有一点他们无法或不愿考虑,那就是一个没有水泥的世界。"在英国材料加工研究所的电弧炉中首次生产电水泥的照片。资料来源:材料加工研究所混凝土由沙子、砾石、水和作为粘合剂的水泥制成。虽然水泥在混凝土中所占的比例很小,但却造成了近 90% 的混凝土排放量。水泥是通过一种名为"熟料"的工艺制成的,在这种工艺中,石灰石和其他原材料被粉碎,并在大型窑炉中被加热到约 1450°C 的温度。这一过程将原料转化为水泥,但在石灰石脱碳转化为石灰的过程中会释放出大量的二氧化碳。替代材料的挑战过去十年来,科学家们一直在研究水泥的替代品,并发现混凝土中大约一半的水泥可以用粉煤灰等替代材料代替,但这些替代材料需要被剩余的水泥化学激活才能硬化。Allwood说:"这也是一个数量问题我们没有足够的替代品来满足全球每年约40亿吨的水泥需求。我们已经找到了低悬果实,可以通过精心混合和掺和来帮助我们减少水泥用量,但要想一直实现零排放,我们需要开始跳出固有思维。"第一作者、工程系的 Cyrille Dunant 博士说:"我在以前的工作中就有一个模糊的想法,如果有可能粉碎旧混凝土,取出沙子和石子,加热水泥就能去除水分,然后就能重新形成熟料。液态金属浴将有助于这种化学反应的进行,而用于回收钢材的电弧炉则很有可能。我们必须尝试一下。"在英国材料加工研究所的电弧炉中首次生产电水泥的照片。资料来源:材料加工研究所熟化过程需要热量和正确的氧化物组合,所有这些都存在于废旧水泥中,但需要重新激活。研究人员测试了一系列由拆除废料制成的炉渣,并添加了石灰、氧化铝和二氧化硅。炉渣在材料加工研究所的电弧炉中与钢水一起加工,然后迅速冷却。"我们发现水泥熟料和氧化铁的组合是一种极好的炼钢熔渣,因为它发泡且流动性好,"Dunant 说。"如果平衡得当,炉渣冷却得足够快,最终就能得到活性水泥,而不会增加炼钢工艺的任何成本。"通过这种回收工艺制作的水泥比传统水泥含有更多的氧化铁,但研究人员表示,这对水泥的性能影响不大。剑桥电动水泥工艺的规模一直在迅速扩大,研究人员表示,到 2050 年,他们的年产量将达到 10 亿吨,大约相当于目前水泥年产量的四分之一。"生产零排放水泥绝对是一个奇迹,但我们还必须减少水泥和混凝土的用量,"Allwood 说。"混凝土既便宜又结实,而且几乎可以在任何地方制造,但我们却用得太多了。我们可以在不影响安全的情况下大幅减少混凝土的用量,但这需要政治意愿。剑桥电动水泥不仅是建筑行业的一次突破,我们还希望它能成为一面旗帜,帮助政府认识到,在实现零排放的道路上,创新的机会远远超出了能源领域。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

NASA研发的新型机器人无需充电即可自主探索海洋

NASA研发的新型机器人无需充电即可自主探索海洋 Seatrec 公司发明了一种新型水下机器人,理论上可以无限期地在海洋中漫游,而无需加油或充电。相反,它利用温度波动产生的动能来发电。该公司宣称,与传统水下机器人相比,该系统的优势在于可以消除海底的电池残骸。该系统类似于一个圆柱形浮标,它被恰当地称为"infiniTE浮标"。它依靠相变材料,在机器人下潜和浮出水面时在固态和液态之间交换。这种独特材料的熔点约为华氏 50 度(摄氏 10 度),介于华氏 40 度(摄氏 4.4 度)和华氏 70 度(摄氏 21.1 度)的海洋平均温度之间,因此非常适合这项工作。因此,当它潜入寒冷的深海时,一种基于石蜡的材料会凝固和收缩,迫使液压流体通过一个微型发电机为机器人的电池充电。当机器人驶向温度较高的表层水域时,这种材料会融化并膨胀,从而再次启动循环。Seatrec 创始人兼首席执行官 Yi Chao 于 2011 年在美国国家航空航天局喷气推进实验室工作时首次提出了这一概念。经过十多年的研发,这家初创公司终于将无人机推向市场。机器人报告》指出,该公司还在向研究实验室、大学、政府机构和军方销售其首个用于潜水浮筒自充电的电源模块。这项技术将为海洋勘探和监测带来大量机会。首先,海洋学家可以绘制出约 80% 的海底地图,而这些地图仍是未知领域。Seatrec 还利用原型机测量了海湾地区的飓风强度,对机器人进行了实地测试。该公司正在与南密西西比大学的罗杰-威克海洋企业中心(Roger F. Wicker Center for Ocean Enterprise)合作,在墨西哥湾研究极度濒危的莱斯鲸。他们将部署两种版本的 infiniTE 漂浮系统,一种用于跟踪影响鲸鱼栖息地的温度等海洋条件,另一种则使用水听器倾听鲸鱼的声音。Chao 预计,铺设海底电缆的电信公司、近海石油/天然气钻探公司、风力发电厂开发商、绘制海洋栖息地地图的环保组织以及需要监测海底设备和条件的公司等行业将对该系统产生强劲需求。展望未来,Seatrec 表示计划下一步将水下滑翔机的相变动力商业化,然后是能够同时为多个机器人充电的高输出液-气能量采集系统。 ... PC版: 手机版:

封面图片

混凝土制造新工艺实现45%的二氧化碳封存率

混凝土制造新工艺实现45%的二氧化碳封存率 工程师发明了一种在制造混凝土过程中储存CO2的新方法。 图片来源:西北大学混凝土是世界上消耗量最大的材料之一。为制造最简单的混凝土,工人们需要将水、细骨料(如沙子)、粗骨料(如砾石)和水泥混合在一起,但制造过程中会产生大量CO2。水泥和混凝土行业排放的CO2占全球温室气体排放的8%。科学家正努力开发新技术,以减少水泥和混凝土生产过程中的CO2排放,并将其转化为“碳汇”产品。目前,在制造混凝土的过程中,主要有两种封存CO2的方法:一是硬化混凝土碳化处理,即将固体混凝土块放置在腔室中,在高压下注入CO2气体;二是新烧混凝土碳化,即在生产混凝土时向水、水泥和骨料的混合物中注入CO2气体。研究人员表示,这两种方法虽然能使一些注入的CO2与水泥发生反应,形成固体碳酸钙晶体,但CO2捕获效率低、能耗高。而且,这些方法产生的混凝土强度往往会被削弱,限制了其应用范围。在最新研究中,研究人员采用了新烧混凝土碳化过程。但他们并未在混杂所有成分时注入CO2,而是首先将CO2气体注入与少量水泥粉混合的水中,再将得到的碳酸悬浮液与其他水泥和骨料混合,最终制造出了新型混凝土。这一过程不仅实现了45%的CO2封存率,混凝土的强度也能与普通混凝土相媲美。这种新方法可以重新利用混凝土制造过程中排放的部分CO2,且技术简单容易实施。 ... PC版: 手机版:

封面图片

旧混凝土可以在用于回收钢材的熔炉中回收利用 大大减少碳排放量

旧混凝土可以在用于回收钢材的熔炉中回收利用 大大减少碳排放量 混凝土是世界上使用最多的建筑材料,而制造混凝土是一项特别肮脏的工作仅混凝土生产就排放了全球二氧化碳总量的 8%。遗憾的是,要将混凝土回收再利用,使其可以用于制造新的混凝土结构并不容易。科学家们当然一直在研究如何使混凝土更加环保。这包括改变配方,剔除污染最严重的成分(特别是石灰石),或者设计混凝土,使其在铺设后能从空气中吸收更多的二氧化碳。在这项新研究中,剑桥大学的研究人员调查了如何将废弃混凝土重新转化为熟料(水泥的干燥成分),以便再次使用。这项研究的第一作者 Cyrille Dunant 博士说:"我在以前的工作中就有一个模糊的想法,如果有可能粉碎旧混凝土,取出沙子和石子,加热水泥就能去除水分,然后就能重新形成熟料。液态金属浴将有助于这种化学反应的进行,而用于回收钢材的电弧炉则很有可能。我们必须尝试一下。"电弧炉需要一种"助熔剂"材料(通常是石灰)来净化钢水。这种熔化的岩石物质会捕捉杂质,然后冒泡到表面,形成一层保护层,防止新的纯钢暴露在空气中。工艺结束时,用过的助熔剂会作为废料丢弃。因此,在剑桥方法中,石灰助熔剂被换成了再生水泥浆,它不仅能很好地净化钢水,而且如果将剩下的矿渣在空气中快速冷却,它就会变成新的波特兰水泥。这样制成的混凝土与原来的混凝土性能相似。重要的是,研究小组表示,这种技术不会增加混凝土或钢材生产的主要成本,与通常的生产方法相比,还能显著减少二氧化碳排放量。如果电弧炉由可再生能源提供动力,那么它基本上可以制造出零排放的水泥。这项技术已经在生产几十公斤水泥的熔炉中进行了试验,研究人员说,本月正在进行首次工业规模试验,两小时内将生产约 66 吨水泥。研究人员说,到 2050 年,该工艺的规模可以扩大到生产 10 亿吨"电动水泥"。领导这项研究的朱利安-艾尔伍德教授说:"生产零排放水泥绝对是一个奇迹,但我们还必须减少水泥和混凝土的用量。混凝土既便宜又结实,而且几乎可以在任何地方制造,但我们却用得太多了。我们可以在不降低安全性的前提下大幅减少混凝土的用量,但这需要政治意愿。""剑桥电动水泥"不仅是建筑行业的一次突破,我们还希望它能成为一面旗帜,帮助政府认识到,在实现零排放的道路上,创新的机会远远超出了能源领域。作为商业化的第一步,该工艺已经申请了专利。这项研究发表在《自然》杂志上。研究小组在下面的视频中介绍了这项工作。 ... PC版: 手机版:

封面图片

石墨烯取代沙子 制造更轻、更坚固的混凝土

石墨烯取代沙子 制造更轻、更坚固的混凝土 尽管石墨烯只是一张只有一个原子厚的碳原子薄片,但它却以无比坚固而著称。因此,这种"神奇材料"被掺入混凝土中也就不足为奇了,通常是为了使混凝土更加坚固耐用。但这通常只是在配方中加入石墨烯,而在新的研究中,莱斯大学的研究小组希望用它完全取代沙子。混凝土由三种主要成分组成:水、砂等骨料以及将其粘合在一起的水泥。按体积计算,砂是最大的成分,而由于现代人类对混凝土的贪得无厌,砂矿的开采量正在不断增加。这一过程不仅具有破坏性,而且还面临着资源枯竭的风险。这项研究来自莱斯大学化学家詹姆斯-图尔(James Tour)的实验室,他的团队多年来一直在使用他们开发的一种名为闪焦耳加热的技术制造石墨烯。从本质上讲,富含碳的基础材料在电流的作用下迅速过热,转化为石墨烯薄片。在这种情况下,基础材料是冶金焦炭,一种从煤炭中提取的燃料。"最初的实验是将冶金焦炭转化为石墨烯,结果得到了一种大小与沙子相似的材料,"该研究的第一作者保罗-阿芬库拉(Paul Advincula)说。"我们决定探索将冶金焦炭衍生的石墨烯用作混凝土中沙子的完全替代品,我们的研究结果表明,它的效果非常好。"节省沙子并不是唯一的好处。与使用普通骨料制成的混凝土相比,这种混凝土的重量减轻了 25%,韧性提高了 32%,峰值应变提高了 33%,抗压强度提高了 21%。但从另一方面看,其杨氏模量降低了 11%,而杨氏模量是衡量材料抗拉伸变形能力的指标。研究小组表示,虽然石墨烯目前过于昂贵,无法使这种方法在商业上实现规模化,但它至少表明,还有其他方法可以采用。这项研究发表在《ACS 应用材料》杂志上。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人