新理论模型显示表面特定结构细节如何影响水的冰点

新理论模型显示表面特定结构细节如何影响水的冰点 研究结果及其影响研究人员在美国化学学会(ACS)春季会议上展示了他们的研究成果。美国化学学会 2024 年春季会议是一个混合会议,将于 3 月 17-21 日以虚拟和现场方式举行;会议期间将有近 12000 场关于各种科学主题的报告。物理和材料化学教授瓦莱里娅-莫利内罗(Valeria Molinero)说:"冰核形成是大气中最常见的现象之一。上世纪五六十年代,人们对冰核现象的兴趣激增,希望通过播撒物质到云层中来控制天气,并实现其他军事目标。一些研究探讨了小形状如何促进冰核形成,但理论并不成熟,也没有人做过任何定量研究"。水结冰看似简单,但对邱宇清和瓦莱里娅-莫利内罗来说并非如此。通过探索表面化学与几何之间的关系,可以使制造冰或雪的过程更加节能,从而帮助制造云层或为高山增添积雪。余庆将于3月20日星期三在新奥尔良举行的ACS Spring 2024会议上介绍这项研究。当气温下降时,液态水中的分子通常会飞速旋转并彼此擦肩而过,但它们会失去能量并减慢速度。一旦失去足够的能量,它们就会停顿下来,调整方向以避免相互排斥,最大限度地增加吸引力,并在原地振动,形成我们称之为冰的水分子结晶网络。当液态水完全纯净时,冰可能要等到温度降到华氏零下 51 度时才会形成;这就是所谓的过冷现象。但是,如果水中存在最微小的杂质烟尘、细菌甚至是特定的蛋白质,冰晶就会更容易在表面形成,从而在温度高于零下 51 华氏度时形成冰。冰核研究的进展几十年的研究揭示了不同表面的形状和结构如何影响水的冰点的趋势。莫利内罗和她的团队在早些时候对细菌内的成冰蛋白质进行的研究中发现,蛋白质组之间的距离会影响结冰的温度。莫利内罗说:"有些距离非常有利于冰的形成,有些距离则完全相反。"在其他表面也观察到了类似的趋势,但没有找到数学解释。博士后邱宇清(Yuqing Qiu)说:"之前人们已经有了'哦,也许某个表面会抑制或促进冰核形成'的感觉,但没有办法解释或预测他们在实验中观察到的现象。"邱宇清和莫利内罗都曾在犹他大学从事这项研究,不过她现在芝加哥大学工作。为了填补这一空白,莫利内罗、邱和团队收集了数百份以前报告过的关于表面微小凹凸之间的角度如何影响水的冻结温度的测量数据。然后,他们根据数据对理论模型进行了测试。他们利用这些模型来考虑促进冰晶形成的因素,如水与表面的结合强度和结构特征之间的角度。最后,他们确定了一个数学表达式,表明表面特征之间的某些角度会使水分子更容易聚集,并在相对较高的温度下结晶。他们说,他们的模型可以帮助设计表面材料,从而以最小的能量输入更有效地形成冰。这方面的例子包括制雪机或制冰机,或适合播种云层的表面,西部几个州使用播种云层来增加降雨量。它还有助于更好地解释大气中的微小矿物颗粒是如何通过冰核作用帮助形成云的,从而有可能使天气模型更加有效。编译自/scitechdaily ... PC版: 手机版:

相关推荐

封面图片

中国科学家“看到”冰表面原子结构

中国科学家“看到”冰表面原子结构 北京大学物理学院、北京怀柔综合性国家科学中心轻元素量子材料交叉平台(简称轻元素平台)组成的研究团队,利用自主研发的国产 qPlus 型扫描探针显微镜,在国际上首次“看到”冰表面的原子结构,并揭示其在零下 153 摄氏度即开始融化的奥秘。该成果 22 日晚发表于国际学术期刊《》上。 冰表面的研究对探索生命起源和物质来源具有重要意义,但因缺乏原子尺度实验工具,科学界对冰表面结构的基本问题一直未有明确解答。 据介绍,团队利用 qPlus 型扫描探针显微镜,开发出可分辨氢原子和化学键的成像技术,实现冰表面水分子氢键网络的精确识别和氢原子分布的精准定位。探测发现,冰表面结构同时存在六角密堆积和立方密堆积两种排列方式,且拼接堆砌形成稳定的网络结构。 轻元素平台负责人江颖教授表示:“我们通过变温实验,首次在原子尺度上‘看到’冰表面预融化的过程,发现其在零下 153 摄氏度时就开始融化,这对理解冰面的润滑现象、云的形成及冰川的消融过程等至关重要”。来源 , 频道:@kejiqu 群组:@kejiquchat

封面图片

新研究揭示北极海冰活动如何影响东亚冬季气温

新研究揭示北极海冰活动如何影响东亚冬季气温 最近的研究强调了北极海冰减少对“北极暖、欧亚冷”气候模式的重大影响,研究表明大气条件会产生不同的影响。未来预测表明,到本世纪中叶,北极冬季冰层形成将会增加,这为持续的气候变化提供了见解。2023 年 3 月 20 日,格陵兰迪斯科湾的海冰。图片来源:Lars Henrik Smedsrud北极海冰一直在迅速减少,过去 40 年来,夏季海冰面积每十年减少约 12.2%。早期研究表明,北极海冰减少在推动“北极暖,欧亚冷”气候模式方面发挥了关键作用。然而,现有观测资料的局限性引发了人们对内部大气变化是否可能掩盖海冰减少的真正影响的质疑。卑尔根大学地球物理研究所高级研究员、《大气科学进展》杂志上发表的研究报告的通讯作者何胜平博士利用大规模实验来解开北极海冰损失和内部大气变化对这种气候模式的影响。该研究与多家国际机构合作,发现海冰减少确实可以引发“北极暖、东亚冷”模式。然而,海冰减少对东亚的降温效应很容易被大气变化所掩盖,导致更显著的冷或暖异常。该团队还研究了未来北极海冰的变化,重点关注新形成的冬季冰层。随着北极变暖,冬季开阔海洋面积的增加使得更多新形成的冰层得以形成。这些新形成的冰层为北极-空气-海洋相互作用和北半球更广泛的大气联系提供了重要信息。他们的发现表明,在各种排放情景下,北极冬季新形成的冰预计会持续增加到本世纪中叶,此后在较为温和的情景下会趋于稳定,但在较高的排放下则会减少。这些新研究不仅量化了北极海冰对冬季气温的直接影响,还揭示了冬季北极新形成的冰的增加趋势。这些发现为“新北极”时代的气候变化提供了重要见解。编译自/scitechdaily ... PC版: 手机版:

封面图片

美国国家海洋和大气管理局的最新预测模型揭示了天气如何影响花粉水平

美国国家海洋和大气管理局的最新预测模型揭示了天气如何影响花粉水平 访问:NordVPN 立减 75% + 外加 3 个月时长 另有NordPass密码管理器 根据美国疾病控制和预防中心(CDC)的数据,有 8000 多万美国人因空气中的花粉而患有季节性过敏症。每年的相关医疗费用超过 30 亿美元,其中近一半是处方药费用。花粉是一种机会均等的刺激物,尤其是在春季、夏季和秋季,此时来自树木、草和杂草的风吹花粉可能达到最高水平。准确的花粉预报可以帮助患者减少接触花粉的机会,就像在臭氧浓度较高的日子里采取预防措施一样。过去两年来,美国国家海洋和大气管理局全球系统实验室(GSL)的研究人员一直在开发美国首个同类花粉预报。该预报既能预测天气对花粉浓度的影响,也能预测花粉量将如何影响天气。自 2022 年夏季以来,该实验模型一直在生成花粉预报,其表现与商业花粉预报类似。"花粉及其相关过敏症是人们日常生活的重要组成部分,"在 GSL 工作的 CIRES 科学家 Jordan Schnell 研究员说。"有了对花粉及其传播地点的实时预测,人们就可以调整他们的户外活动、药物并采取预防措施,以确保他们的健康。"花粉预报是试验性快速更新化学(RAP-Chem)天气和大气化学预报系统的一个模块。RAP-Chem 是下一代耦合天气和空气质量预报系统,模拟气相和气溶胶化学和传输。该模型每天生成一次 48 小时的臭氧、烟雾、灰尘以及其他空气质量和大气化学相关参数(包括花粉)的预报。RAP-Chem 模拟天气对花粉浓度的影响,如花粉排放量和空气中花粉含量的每日波动。花粉在白天排放,主要受模型模拟风的驱动。到了晚上,排放停止,花粉颗粒沉降到地面,花粉浓度下降。雨水也往往会净化空气,减少花粉数量,不过雷暴造成的低温下沉气流会集中花粉颗粒,使眼睛发痒或哮喘加重。湿度甚至闪电都会将花粉颗粒分解成更小的碎片,使它们更容易被吸入,并改变它们影响天气的能力。与其他模型不同,RAP-Chem 还考虑了花粉、灰尘和烟雾对天气的影响。花粉颗粒和其他悬浮颗粒一样,会散射阳光,成为形成云层的种子,并影响温度、能见度和降水。海洋大气署的研究人员目前正在与疾病预防控制中心等公共卫生利益相关方合作,研究过去的 RAP-Chem 高花粉预报与寻求过敏缓解的患者之间是否存在相关性。这将有助于验证预报模型,这也是成为官方预报产品的必经之路。要了解如何生成 RAP-Chem 花粉预报,请访问全球系统实验室页面。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

小行星表面发现疑似水的踪迹 研究结果有助于解答地球是如何获得水的

小行星表面发现疑似水的踪迹 研究结果有助于解答地球是如何获得水的 研究人员在三颗大小行星上发现了可能是水的物质痕迹:7 Iris、18 Melpomene 和 20 Massalia。其中,Iris 和 Massalia 显示出明确无误的水迹,其数量与之前在地球月球的阳光表面探测到的数量相似。以前在小行星上可能发现的水可能只是羟基被误认为是水。这些发现之所以能说明问题,主要是因为小行星的位置及其与太阳系形成的关系。这一发现有助于天文学家研究水最初是如何出现在地球上的,目前存在多种理论。在大约 45 亿年前太阳系形成之初,人们认为太阳系内部温度过高,水无法自发形成。一种合理的解释是,来自外太阳系的冰彗星和卫星的撞击可能把水带到了这里。然而,这需要木星等外行星的不稳定轨道。其他证据表明,地球上的大部分水在地球形成之初就已经存在,或者说在地球诞生之初,巨大的撞击产生了月球。最近的发现扩大了内太阳系中可能有水的地方的数量。进一步的调查可能会进一步扩大发现的范围。天文学家利用美国国家航空航天局(NASA)的平流层红外天文观测台(SOFIA)飞机上的数据得出了这一发现,这架飞机是波音747,上面安装了一台106英寸的望远镜。利用飞机,该仪器可以从大气干扰较少的地球平流层进行观测。它还可以观测海洋上空发生的事件,海洋覆盖了地球表面的大部分,但却没有望远镜。不过,SOFIA 已于 2022 年退役,对小行星的进一步研究将利用詹姆斯-韦伯望远镜(James Webb Telescope)。 ... PC版: 手机版:

封面图片

微小裂缝,全球影响:MIT研究人员揭示微观冰层缺陷如何塑造冰川

微小裂缝,全球影响:MIT研究人员揭示微观冰层缺陷如何塑造冰川 一条冰川流入格陵兰岛西南海岸的峡湾。麻省理工学院的一项新研究介绍了一种基于微观冰缺陷绘制冰川流动图的模型,通过详细描述冰川对压力敏感性的区域变化,提供了冰川动力学的细微视角,并改进了海平面上升的预测。资料来源:Meghana Ranganathan冰川流动与海平面上升随着冰川和冰盖的融化和入海,全球水位正以前所未有的速度上升。科学家需要更好地了解冰川融化的速度以及影响冰川流动的因素,以便预测未来海平面上升的情况并做好准备。现在,麻省理工学院科学家的一项研究根据冰的微观变形,为冰川流动提供了新的图景。研究结果表明,冰川的流动在很大程度上取决于微观缺陷如何在冰层中移动。研究人员发现,他们可以根据冰川是否容易出现某种微观缺陷来估计冰川的流动情况。他们利用这种微观和宏观变形之间的关系,建立了冰川流动的新模型。利用这个新模型,他们绘制了南极冰原上各个地点的冰流图。穿过南极洲罗斯冰架附近山谷的冰流。图片来源:Meghana Ranganathan挑战冰流的传统观点他们发现,与传统观点相反,冰原并不是一个整体,相反,它在应对气候变暖压力时的流动地点和方式更加多样。研究人员在论文中写道,这项研究"极大地改变了海洋冰原可能变得不稳定并导致海平面快速上升的气候条件"。Meghana Ranganathan 博士说:"这项研究真正展示了微观过程对宏观行为的影响。这些机制发生在水分子的尺度上,最终会影响南极西部冰盖的稳定性"。她是麻省理工学院地球、大气和行星科学系(EAPS)的研究生,现在是佐治亚理工学院的博士后。共同作者、EAPS 副教授 Brent Minchew 补充说:"广义上讲,冰川正在加速,围绕这一点有很多变数。这是第一项从实验室到冰原的研究,开始评估自然环境中冰的稳定性。这最终将有助于我们了解灾难性海平面上升的概率。"Ranganathan 和 Minchew 的研究最近发表在《美国国家科学院院刊》上。冰川运动与海平面影响冰川流动是指冰从冰川的顶峰或冰原的中心向下移动到边缘,然后冰在边缘断裂并融化到海洋中的过程这个过程通常很缓慢,但随着时间的推移,会导致世界平均海平面上升。近年来,在全球变暖以及冰川和冰原加速融化的推动下,海洋以前所未有的速度上升。众所周知,极地冰川的消失是导致海平面上升的主要原因,但这也是预测时最大的不确定因素。"部分原因是规模问题,"Ranganathan 解释说。"很多导致冰流动的基本机制都发生在我们无法看到的非常小的尺度上。我们想准确地确定这些支配冰流的微物理过程是什么,而海平面变化模型中还没有体现出这些微物理过程。"明尼苏达大学的地质学家在 2000 年代初进行了实验,研究了小块冰在受到物理压力和压缩时如何变形。他们的研究揭示了冰流动的两种微观机制:一种是"位错蠕变",即分子大小的裂缝在冰中移动;另一种是"晶界滑动",即单个冰晶相互滑动,导致它们之间的边界在冰中移动。地质学家发现,冰对应力的敏感性,或者说冰流动的可能性,取决于两种机制中哪一种占主导地位。具体来说,当微观缺陷是通过位错蠕变而不是晶界滑动产生时,冰对应力更敏感。兰加纳坦和明切意识到,这些微观层面的发现可以重新定义冰川尺度更大的冰流方式。他们解释说:"目前的海平面上升模型假定冰对压力的敏感性只有一个值,并且在整个冰原上保持这个值不变。"这些实验表明,实际上,由于这些机制中的哪一种在起作用,冰的敏感性存在着相当大的变异性"。预测冰川流动的新模型在新的研究中,麻省理工学院的研究小组从之前的实验中汲取灵感,建立了一个模型来估算冰区对应力的敏感度,这直接关系到冰流动的可能性。该模型吸收了环境温度、冰晶平均大小和该区域冰的估计质量等信息,并计算出冰通过位错蠕变和晶界滑动发生变形的程度。根据这两种机制中哪一种占主导地位,模型就能估算出该区域对应力的敏感性。科学家们将从南极冰原上不同地点观测到的实际数据输入到模型中,其他科学家之前在这些地点记录了当地的冰层高度、冰晶大小和环境温度等数据。根据模型的估计,研究小组绘制了南极冰原上冰对压力的敏感性地图。当他们将该地图与卫星和实地对冰原的长期测量结果进行比较时,发现两者非常吻合,这表明该模型可用于准确预测冰川和冰原在未来的流动情况。"随着气候变化使冰川开始变薄,这可能会影响冰对压力的敏感性,"Ranganathan 说。"我们预计南极洲的不稳定性可能会非常不同,我们现在可以利用这个模型捕捉这些差异。"编译自/scitechdaily ... PC版: 手机版:

封面图片

新模型通过古代岩石来预测未来的地震

新模型通过古代岩石来预测未来的地震 研究人员在《科学进展》杂志上报道说,来自阿拉斯加和日本岩层的线索使科学家们能够开发出一种新模型来预测俯冲带的压力溶液活动。 沉积岩由被含水孔隙包围的颗粒组成。 当岩石在巨大压力下挤压在一起时,颗粒在其边界处溶解到孔隙中的水中,形成压力溶液。 这使得岩石变形或改变形状,从而影响构造板块如何相互滑动。“这就像当你去滑冰时表面的刀片最终会融化冰,这让你可以滑行,”通讯作者、宾夕法尼亚州立大学地球科学教授唐纳德·费舍尔说。 “在岩石中,发生的情况是石英颗粒在受力接触处溶解,溶解的材料移动到裂缝并在那里沉淀。”世界上最强烈的地震发生在俯冲带,其中一个板块滑向另一个板块下方。 当这些板块粘在一起时,地壳中就会产生压力就像橡皮筋被拉伸一样。 当产生足够的应力来克服将板块固定在一起的摩擦力时(就像橡皮筋折断一样),就会发生地震。“我们已经证明,压力溶解是俯冲带震间期的一个基本过程,”费舍尔说。 “这种压力溶液的出现确实会影响震源区不同部分积累的弹性应变的大小。”最新研究表明,如图所示的岩石露头中的剪切(或由应变引起的断裂)可能为俯冲带大地震之间发生的构造提供新的线索。 相机镜头显示了岩石特征的规模。 图片来源:唐纳德·费舍尔提供费舍尔说,压力溶液很难在实验室中探索,因为它通常在数千到数百万年的时间内非常缓慢地发生。 在实验室中加快这一过程需要更高的温度,这会导致岩石发生其他变化,从而影响实验。科学家们转而研究曾经经历过这些构造压力、后来通过地质过程带到地表的岩石。 科学家们表示,这些岩石显示出微观剪切力,即由应变引起的断裂,其中包含的纹理为压力溶解提供了证据。费舍尔说:“这项工作使我们能够测试流动定律或模型,它描述了曾经位于板块边界并已被挖掘到地表的古代岩石中的压力溶解速率。我们可以将其应用于今天正在变化的活跃利润率。”另一组科学家之前的一项研究将岩石所承受的压力与应变率(或者说它们的变形程度)联系起来。 在这项新工作中,费舍尔和他的同事、布朗大学教授格雷格·赫斯创建了一个更详细的模型,该模型考虑了岩石的粒度和溶解度等因素,或者有多少岩石材料可以溶解到液体中。“我们能够以一种以前从未做过的实用方式将溶解度参数化为温度和压力的函数,”费舍尔说。 “所以现在我们可以输入数字不同的晶粒尺寸、不同的温度、不同的压力,并从中得到应变率。”这些结果可以帮助揭示在发震层(大多数地震发生的深度范围)中发生应变的位置。研究人员将他们的模型应用于卡斯卡迪亚俯冲带,这是一条从加利福尼亚州北部一直延伸到加拿大的活断层,途经俄勒冈州波特兰、西雅图和不列颠哥伦比亚省温哥华等主要城市。科学家们表示,板块边界沿线的温度和应变量都得到了很好的研究,他们的模型结果与基于卫星观测的地壳运动相匹配。“卡斯卡迪亚大地震是一个很好的例子,因为它处于震间期的晚期距离上次大地震已经过去了 300 年,”费舍尔说。 “我们一生中可能会经历一次,这将是北美可以预见的最大的自然灾害,因为有可能发生地震并引发海啸。”编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人