地下能量:源自细菌的电网如何塑造我们的世界

地下能量:源自细菌的电网如何塑造我们的世界 土壤细菌利用蛋白质为纳米线供电,形成了一个支持生命并影响甲烷排放的地下电网。耶鲁大学和里斯本诺瓦大学诺瓦科技学院(NOVA-FCT)的研究人员发现,为了在没有氧气的环境中"呼吸",我们脚下地下的细菌依靠单一的蛋白质家族将营养物质"燃烧"过程中产生的多余电子转移到从其表面伸出的被称为电毛的纳米线上。这项新研究的共同资深作者、耶鲁大学分子生物物理学和生物化学系及微生物科学研究所副教授尼基尔-马尔万卡尔(Nikhil Malvankar)和诺瓦研究中心全职教授卡洛斯-萨尔盖罗(Carlos Salgueiro)说,这一系列蛋白质实质上就像插头一样,为这些纳米线供电,在地球深处形成天然电网,使许多类型的微生物得以生存并支持生命。研究人员发现一个蛋白质家族,其功能是为细菌纳米线充电的电源"插头"。资料来源:Eric Martz马尔万卡尔实验室和萨尔盖罗实验室对这种微生物电网的组成部分进行了广泛研究。然而,人们还不清楚细菌如何将新陈代谢活动产生的多余电子传递到从其表面伸出的纳米线上,并与矿物质或邻居相连接。他们发现,许多种类的土壤细菌都依赖于其体内单一而广泛的细胞色素家族来为纳米线充电。了解这种纳米线充电的细节对于开发新能源和新生物材料的潜力及其对环境的影响非常重要。马尔万卡尔和萨尔盖罗指出,微生物吸收了海洋中80%的甲烷,而甲烷是从海底排放的,是导致全球变暖的主要因素。然而,地球表面的微生物排放到大气中的甲烷占 50%。他们说,了解不同的代谢过程可能有助于减少甲烷排放。《自然-通讯》(Nature Communications)杂志报道了这项研究。 这项工作由共同第一作者皮拉尔-波特拉(Pilar Portela)和凯瑟琳-希普斯(Catharine Shipps)以及沈聪(Cong Shen)和维肖克-斯里坎特(Vishok Srikanth)领导。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

研究发现母乳中的蛋白质慧通过影响肠道细菌的组成提高后代的免疫力

研究发现母乳中的蛋白质慧通过影响肠道细菌的组成提高后代的免疫力 研究人员发现,母乳中缺乏一种关键补体蛋白的哺乳小鼠所哺育的幼鼠,其肠道微生物种群与用标准小鼠母乳哺育的幼鼠不同,这使它们极易受到腐蚀柠檬酸杆菌( 一种感染小鼠肠道的细菌)的感染,这种细菌类似于某些类型的导致腹泻的大肠杆菌,后者可以感染人类,但不能感染小鼠。研究人员的实验表明,小鼠母乳中的补体成分能直接消灭某些类型的肠道细菌,从而促进小鼠婴儿的健康。这种对肠道微生物群的重塑使婴儿小鼠不易受腐蚀柠檬酸杆菌感染,从而保护幼鼠免受某些传染病的威胁。这种重塑活动并不依赖于抗体,这与人们通常认为的补体成分的作用方式截然不同。研究人员还在单独的体外分析中证实,人类母乳中含有这些补体成分,它们在靶向特定细菌方面表现出类似的活性。综上所述,这些发现揭示了母乳如何发挥保护作用,防止某些细菌感染的机制。这项研究发表在《细胞》杂志上。研究资深作者、彭博学院生物化学与分子生物学系教授、博士万凤仪(Fengyi Wan)说:"这些发现揭示了母乳补体蛋白在塑造后代肠道微生物组成和保护后代早期肠道免受细菌感染方面的关键作用。这代表着我们对母乳保护机制的认识有了重要的扩展"。该研究的第一作者是万研究小组的助理科学家、博士徐冬青。母乳喂养的益处与补充蛋白质母乳喂养有许多已知和潜在的益处。它能为婴儿提供极佳的营养,似乎还能预防某些短期或长期疾病。众所周知,母乳还能通过共享来自母体的抗体和白细胞来帮助预防常见感染。母乳中还含有补体蛋白,它们可以与抗体协同或"互补"攻击细菌。血液中的补体蛋白一直是研究的重点,而母乳中的补体蛋白却很少被研究,直到现在它们的作用还不清楚。在这项新研究中,万和他的团队使用了缺乏关键补体基因的工程小鼠。他们发现,这种雌性小鼠的乳汁会使几周大的幼鼠即使是补体基因正常的幼鼠极易感染腐蚀柠檬酸杆菌而引发结肠炎,而且往往是致命的。与此相反,食用正常、含有补体的牛奶的幼鼠只表现出轻微和短暂的肠道感染症状。研究小组发现,母乳补体蛋白的这种保护作用取决于其塑造婴儿肠道微生物群的能力。补体蛋白能杀死肠道中的某些细菌种类,这种对微生物的清除创造了一种整体肠道环境,在这种环境中,如果存在腐蚀柠檬酸杆菌,有害炎症的可能性就会大大降低。"肠道微生物群对健康非常重要,"万说。"母乳中的互补蛋白对婴儿发育早期建立'保护性'肠道微生物群、促进婴儿健康和抵御病原体有着至关重要的作用"。影响和未来方向这项研究似乎也标志着基础免疫学的进步。尽管已知血液中的补体蛋白能够直接破坏细菌细胞,但人们一直认为补体蛋白通常是在特异性免疫反应中与抗体合作发挥作用的。然而,万和他的研究小组发现,母乳中的补体对细菌的活性并不需要抗体,而是一种非特异性免疫反应。这为许多新的研究打开了大门,例如,阐明母乳中特定的补体生物学特性,并将其与血液中的补体生物学特性进行比较,以及评估补体在抗体依赖性特异性免疫系统之外的作用。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家发现的伞状蛋白质能靶向杀死特定细菌 有望治疗耐药性感染

科学家发现的伞状蛋白质能靶向杀死特定细菌 有望治疗耐药性感染 伞状抗菌毒素颗粒飘向细菌靶细胞并与之接触。这些毒素来自链霉菌,能有效抑制同属竞争物种的生长。资料来源:Angela Gao抗生素与细菌战具有讽刺意味的是,临床上使用的许多抗生素都直接来源于细菌在自然栖息地中用来对付对方的分子,或受到这些分子的启发。链丝菌用来对付竞争对手的化学武器是此类分子最丰富的来源之一。其中包括常见的广谱药物链霉素。这些新发现的抗菌毒素的不同之处在于,与链丝菌的小分子抗生素不同,伞状毒素是由多种蛋白质组成的大型复合物。与小分子抗生素相比,它们针对细菌的特异性也更强。《自然》论文的作者推测,伞状毒素的这些特性解释了为什么在对链丝菌产生的毒素进行长达 100 多年的研究中,这些毒素一直没有被发现。生物信息学和低温电子显微镜揭示新观点编码伞状毒素的基因最初是通过生物信息学搜索新的细菌毒素而发现的。在华盛顿大学医学院约瑟夫-穆格斯(Joseph Mougous)微生物实验室的赵琴琴领导的生化和遗传实验中,科学家们了解到这些毒素与其他蛋白质结合成一个大型复合体。这些蛋白质复合物的冷冻电子显微镜由 Young Park 在华盛顿大学医学院生物化学教授、霍华德-休斯医学研究所研究员 David Veesler 的实验室中完成。这些研究表明,秦琴分离出的毒素复合物具有与在西雅图发现的毒素复合物相称的醒目外观。它们看起来像雨伞。独特的结构和特异性华大医学院微生物学教授、霍华德-休斯医学研究员穆格斯指出:"这些微粒的形状非常奇特,在未来的工作中,了解它们不同寻常的形态如何帮助它们消灭目标细菌将是一件非常有趣的事情。"随后,科学家们试图确定这些毒素的靶标,他们筛选了这些毒素对所有生物的影响,从真菌到 140 种不同的细菌,包括研究作者德文-科尔曼(Devin Coleman)在加州大学伯克利分校和美国农业部农业研究服务处的实验室中从高粱植物中提取的一些细菌。.在这些潜在的对手中,这些毒素专门针对自己的同类:其他链丝菌。"我们认为,这种精湛的特异性可能是由于组成伞辐条的蛋白质各不相同。"研究报告的作者、穆格斯实验室的资深科学家布鲁克-彼得森(S. Brook Peterson)评论说:"这些蛋白质可能会吸附在竞争细菌表面的特定糖分上。"通过分析数千个公开的细菌基因组,研究报告的作者、圣路易斯大学的张大鹏(Dapeng Zhang)和他的研究生谭英俊(Youngjun Tan)发现,许多其他种类的细菌也有制造伞状颗粒毒素的基因。有趣的是,这些物种都形成了枝状菌丝,这在细菌中是一种不常见的生长模式。潜在的临床应用和更广泛的影响除了伞状毒素颗粒的基础生物学方面还有许多问题有待解答外,穆格斯和他的同事们对其潜在的临床应用也很感兴趣。他们怀疑导致肺结核和白喉的细菌可能对伞状毒素敏感。他们注意到这些细菌已经对传统抗生素产生了抗药性。科学家们认为,伞状毒素颗粒有可能制服这些严重的致病细菌,因此值得研究。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究发现温度变化可将原本是猎物细菌变为捕食者

研究发现温度变化可将原本是猎物细菌变为捕食者 捕食性黄色粘球菌(左)正在屠杀猎物(右)。黑点是捕食者聚集体,接触区的波纹是捕食者相互作用的特征。图片来源:Nicola Mayrhofer(CC-BY 4.0)先前的研究表明,生态环境会影响捕食者与猎物之间的关系。例如,猎物物种的背景颜色与猎物颜色之间的相似度或对比度会影响捕食者发现猎物的容易程度。此外,捕食者与被捕食者之间的关系有时也会发生转换,例如两种相互捕食的甲壳类动物,周围盐度的变化会逆转哪种动物占优势。然而,很少有其他已知的例子表明这种关系会随着非生物生态变化而发生转换。有些细菌会捕食其他细菌,而生态环境会影响捕食效率。基于这一认识,Vasse 及其同事进行了几项实验室实验,测试温度如何影响黄色粘球菌(Myxococcus xanthus)和荧光假单胞菌(Pseudomonas fluorescens)这两种细菌之间的捕食与被捕食关系。他们发现,当荧光假单胞菌在32摄氏度的培养皿中生长,然后暴露于黄色粘球菌时,后者充当捕食者,大量杀死荧光菌。然而,当荧光菌在 22 摄氏度下生长后,捕食者与被捕食者的关系发生了变化,它们反杀了黄色粘球菌,并从那里获得了继续生长所需的养分。研究人员进行了进一步的实验,以更好地了解在更冷的温度下生长可能逆转捕食者与被捕食者角色的机制。他们找到了荧光假单胞菌释放的一种非蛋白质物质,这种物质对黄色粘球菌具有致死作用,而其产生似乎受到温度的影响。研究人员说,他们的研究结果表明,许多传统上与捕食(即被杀死的生物被其杀手吃掉)并不相关的微生物与微生物之间的杀戮形式实际上可能会导致捕食。他们还指出,在这项研究中,荧光假单胞菌在遇到黄色粘球菌之前的生长温度可以决定这两个物种后来相遇时哪个是捕食者,哪个是猎物,这突出了在评估当前捕食者-猎物关系时考虑历史背景的重要性。这项研究和后续研究有助于了解自然生态学和实际应用,例如优化使用某些微生物来控制其他微生物。作者补充说:"我们发现,在微生物捕食中,一个生态因素相对较小的变化就能决定谁杀谁和谁吃谁,这一点非常吸引人。我们猜测,微生物与微生物之间的杀戮导致的捕食远比以前人们所认识到的要频繁得多"。 ... PC版: 手机版:

封面图片

中国研究人员的最新进展为研制抗超级细菌抗生素创造了条件

中国研究人员的最新进展为研制抗超级细菌抗生素创造了条件 对多种药物产生抗药性的细菌感染是一项重大的世界性挑战,现有的抗生素都无法治疗这种感染。来自中国的一个研究小组在《展望化学》(Angewandte Chemie)杂志上发表了一种创新抗生素的新策略,旨在抗击这些耐药细菌。这种方法利用蛋白质成分与荧光脂链相结合来开发药物。抗生素的处方往往过于随意。在许多国家,抗生素不经处方就被分发,并在工厂化养殖中使用:预防感染和提高性能。因此,抗药性在不断增加,对储备抗生素的抗药性也在增加。开发创新型替代品至关重要。我们可以从微生物本身吸取一些教训。脂蛋白是带有脂肪酸链的小分子蛋白质,细菌在与微生物竞争者的斗争中广泛使用这种蛋白质。许多脂蛋白已被批准用作药物。活性脂蛋白的共同点包括带正电荷和两亲结构,即它们有排斥脂肪的部分,也有排斥水的部分。这使它们能够与细菌膜结合,并穿透细菌膜进入内部。上海华东师范大学程义云领导的研究小组旨在通过用氟原子取代脂链中的氢原子来放大这种效应。这使得脂链同时具有憎水性(疏水性)和憎脂性(疏脂性)。它们特别低的表面能加强了与细胞膜的结合,而它们的疏脂性则破坏了膜的内聚力。研究小组利用氟化碳氢化合物和肽链合成了一个氟化脂肽谱系(物质库)。为了将两部分连接起来,他们使用了氨基酸半胱氨酸,通过二硫桥将它们结合在一起。研究人员通过测试这些分子对耐甲氧西林金黄色葡萄球菌(MRSA)的活性,对这些分子进行了筛选。MRSA 是一种广泛存在的高危菌株,几乎对所有抗生素都有抗药性。他们发现最有效的化合物是"R6F",这是一种由六个精氨酸单位和由八个碳原子和十三个氟原子组成的脂质链构成的多氟脂肪肽。为了提高生物相容性,R6F 被包裹在磷脂纳米颗粒中。在小鼠模型中,R6F 纳米粒子对 MRSA 引起的败血症和慢性伤口感染非常有效。没有观察到任何毒副作用。纳米粒子似乎以多种方式攻击细菌:它们抑制重要细胞壁成分的合成,促进细胞壁的崩溃;它们还刺穿细胞膜并破坏其稳定性;破坏呼吸链和新陈代谢;增加氧化应激,同时破坏细菌的抗氧化防御系统。这些作用结合在一起,就能杀死细菌其他细菌和 MRSA。似乎不会产生抗药性。这些见解为开发治疗多重耐药细菌的高效荧光多肽药物提供了起点。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究发现受感染的微生物会携带产生甲烷的新基因

研究发现受感染的微生物会携带产生甲烷的新基因 研究发现,微生物一旦受到感染,就会携带产生甲烷的新基因。最近的一项研究揭示,感染微生物的病毒在甲烷(一种强效温室气体)的环境循环中发挥着关键作用,从而加剧了气候变化。通过分析从各种湖泊到牛胃内部等15种不同栖息地采集的近1000组元基因组DNA数据,研究人员发现,微生物病毒携带有控制甲烷过程的特殊遗传元素,即辅助代谢基因(AMGs)。根据生物栖息地的不同,这些基因的数量也会不同,这表明病毒对环境的潜在影响也因其栖息地而异。这项研究的第一作者、俄亥俄州立大学伯德极地与气候研究中心副研究员钟志平说,这一发现为更好地理解甲烷如何在不同生态系统中相互作用和移动提供了重要依据。"了解微生物如何推动甲烷过程非常重要,"钟说,他也是一名微生物学家,研究微生物如何在不同环境中进化。"微生物对甲烷代谢过程的贡献已经研究了几十年,但对病毒领域的研究在很大程度上仍然不足,我们希望了解更多"。这项研究发表在《自然通讯》杂志上。病毒在温室气体排放中的作用病毒帮助促进了地球上所有的生态、生物地球化学和进化过程,但科学家们直到最近才开始探索它们与气候变化的关系。例如,甲烷是仅次于二氧化碳的第二大温室气体排放源,但主要是由被称为古细菌的单细胞生物产生的。这项研究的共同作者、俄亥俄州立大学微生物组科学中心微生物学教授马修-沙利文(Matthew Sullivan)说:"病毒是地球上最丰富的生物实体。在这里,我们在一长串病毒编码的代谢基因中增加了甲烷循环基因,从而扩大了我们对其影响的了解。我们的团队试图回答病毒在感染过程中实际操纵了多少'微生物代谢'"。尽管微生物在加速大气变暖方面发挥的重要作用现已得到广泛认可,但人们对感染这些微生物的病毒所编码的甲烷代谢相关基因如何影响它们的甲烷产生却知之甚少,钟南山说。为了解开这个谜团,钟志平和他的同事们花了近十年的时间从独特的微生物库中收集和分析微生物和病毒 DNA 样本。研究小组选择的最重要的研究地点之一是克罗地亚自然保护区内的弗拉纳湖。在富含甲烷的湖泊沉积物中,研究人员发现了大量影响甲烷产生和氧化的微生物基因。此外,他们还发现了多种病毒群落,并发现了 13 种有助于调节宿主新陈代谢的 AMG。尽管如此,没有任何证据表明这些病毒本身直接编码甲烷代谢基因,这表明病毒对甲烷循环的潜在影响因其栖息地而异,钟说。牲畜和环境影响总之,研究显示,甲烷代谢AMG更有可能在宿主相关环境(如牛胃内部)中发现,而在环境栖息地(如湖泊沉积物)中发现的这些基因则较少。由于奶牛和其他牲畜也造成了全球约 40% 的甲烷排放,他们的研究表明,病毒、生物和整个环境之间的复杂关系可能比科学家们曾经想象的更加错综复杂。钟说:"这些发现表明,病毒对全球的影响被低估了,值得引起更多关注。"虽然目前还不清楚人类活动是否影响了这些病毒的进化,但研究小组希望从这项工作中获得的新见解能让人们进一步认识到传染源对地球上所有生命的影响力。尽管如此,要继续深入了解这些病毒的内在机制,还需要进一步的实验来进一步了解它们对地球甲烷循环的贡献,钟南山说,尤其是当科学家们在研究如何减少微生物驱动的甲烷排放时。他说:"这项工作是掌握气候变化的病毒影响的第一步。我们还有很多东西要学。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

Cell子刊:你身体上的微生物群就像指纹一样独一无二

Cell子刊:你身体上的微生物群就像指纹一样独一无二 这是科学家对86人的肠道、口腔、鼻子和皮肤微生物群进行详细研究后得出的结论。在六年的时间里,在每个人的微生物群中存活得最好的细菌是那些对个人最特殊的细菌,而不是整个人群共有的细菌。“我们的研究结果强调了这样一种观点,即我们每个人的体内都有个性化的微生物组,这对我们来说是特殊的,你的基因、饮食和免疫系统都在塑造这个生态系统。”斯坦福大学医学院遗传学教授Michael Snyder博士说。这项新研究由Michael Snyder与George Weinstock(2023年去世)合作领导完成,这是美国国立卫生研究院综合人类微生物组项目的一部分,并在线发表在《细胞宿主与微生物》杂志上。该研究还发现了微生物组与健康之间的几种相关性:例如,2型糖尿病患者的微生物组不太稳定,多样性也较差。“我们认为,随着胰岛素抵抗,血液中脂质、蛋白质和其他代谢物的改变会改变微生物群可利用的营养物质,并影响这些细菌的生长,”遗传学博士后学者、该论文的第一作者Xin Zhou博士说。长期跟踪科学家们最近对人类微生物群在健康和疾病中的作用有了新的认识。但是,微生物群的庞大规模一个普通人体内大约有39万亿个微生物,以及它不断变化的事实,使得研究变得困难。研究人员一直在努力确定是否存在一种理想的微生物组组成,以及改变某人的微生物是否可以减轻疾病。这组研究人员追踪人们的微生物组长达六年,希望更好地了解个体体内的微生物是如何随着短期感染或慢性疾病的发作而变化的。他们每季度从86名年龄在29岁到75岁之间的人的粪便、皮肤、口腔和鼻子中收集微生物组样本。当参与者患有呼吸道疾病、接种了疫苗或服用了抗生素时,在五周的时间里,研究人员额外采集了三到七个样本。每个微生物组样本都进行了基因测序,以揭示其所含的细菌。与此同时,研究人员收集了大量关于参与者健康的其他临床数据,以研究各种因素如何与微生物组的变化相关。研究人员总共分析了5432个生物样本,产生了118,124,374个测量值。Snyder说:“在这么长的一段时间里,研究来自不同身体部位的微生物,让我们第一次把整个微生物群看作一个单一的流体系统。”注重稳定性这项新研究证实了之前的研究发现,揭示了在健康人的微生物组中经常发现的少数细菌,以及在感染和其他疾病期间人体微生物组的显著变化。然而,比单个细菌类型更能说明问题的是微生物组的稳定性。在健康时期,一个人的微生物组很少发生剧烈变化。在感染或糖尿病的发展过程中,构成微生物组的细菌波动更大。“我们发现,当你生病时,比如感冒,你的微生物群会发生这种暂时的变化;它变得非常失调,对于糖尿病来说,这种特征在很多方面都是一样的,除了它是长期的而不是暂时的。”Zhou说。当研究人员专注于哪些微生物在多年的过程中最有可能发生变化时,他们惊讶地发现,对个体来说最特殊的细菌是最稳定的。Snyder说:“很多人会怀疑我们之间共有的细菌是最重要的,因此也是最稳定的。我们发现了完全相反的情况个人微生物群是最稳定的。这进一步表明,我们的个人微生物群与其他人的个人微生物群不同,对我们的健康至关重要。这是有道理的,因为它们都有不同的健康基线。”数据带来了另一个惊喜:身体不同部位的微生物组是高度相关的。即使存在不同类型的细菌,当一个身体部位的微生物群发生变化时,其他部位也会发生变化。例如,如果在呼吸道感染开始时鼻腔细菌发生变化,肠道、口腔和皮肤微生物也会迅速开始发生变化。当肠道细菌随着糖尿病发生变化时,皮肤、口腔和鼻子上的细菌也会发生变化。与健康的联系根据整个研究过程中采集的血液样本,研究小组怀疑免疫系统是连接身体不同部位微生物的共同纽带,也是连接微生物群整体健康的纽带。血液中某些免疫蛋白的水平随着微生物群的变化而同步变化。此外,血脂血液中的脂肪也与微生物群稳定性的变化有关,这解释了与糖尿病的一些联系。该小组指出了几个影响微生物群形成的环境因素:例如,微生物随着季节的变化而发生可预测的变化,可能是由于湿度和阳光水平的变化以及新鲜食物的供应。但是这些环境因素,包括饮食,仍然不能解释人与人之间的差异。研究人员说,新的数据否定了存在一个黄金标准的微生物群的想法,即每个人都应该努力达到最佳健康状态。“相反,我们正在朝着这样一个想法前进,即我们拥有一个个人微生物组,它对我们自己的代谢和免疫健康非常重要。我们的新陈代谢和免疫健康也会极大地影响我们的微生物群它们都是联系在一起的。人与人之间的微生物组差异很大,你如何喂养它,它接触到什么,可能会对你的健康产生重大影响,我们还需要从很多方面解决这个问题。”Snyder说。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人