加州大学研发植物基聚合物 可在七个月内降解消失

加州大学研发植物基聚合物 可在七个月内降解消失 寻找传统石油基塑料和微塑料的可行替代品从未像现在这样重要。加州大学圣迭戈分校的科学家和材料科学公司 Algenesis 的最新研究表明,他们的植物基聚合物能在七个月内完成生物降解,即使是微塑料级别的生物降解。这篇论文发表在《自然-科学报告》上,其作者都是加州大学圣地亚哥分校的教授、校友或前研究科学家 。"我们刚刚开始了解微塑料的影响。我们对环境和健康影响的了解还只是皮毛,"论文作者之一、Algenesis 公司联合创始人、化学与生物化学教授 Michael Burkart 说。"我们正试图为已经存在的材料寻找替代品,并确保这些替代品在使用寿命结束后能够生物降解,而不是在环境中聚集。这并不容易。"论文的另一位作者罗伯特-波默罗伊(Robert Pomeroy)说:"大约六年前,当我们首次创造出这种藻基聚合物时,我们的初衷一直是希望它能够完全生物降解,我们有大量数据表明,我们的材料正在堆肥中消失,但这是我们第一次在微粒水平上对其进行测量。"波默罗伊也是化学与生物化学教授和 Algenesis 公司的共同创始人之一。为了测试其生物降解性,研究小组将其产品研磨成细微颗粒,并使用三种不同的测量工具来确认,当将其放入堆肥中时,这种材料正在被微生物消化。第一个工具是呼吸计。当微生物分解堆肥材料时,它们会释放二氧化碳(CO2),呼吸计会对其进行测量。这些结果与纤维素的分解进行了比较,纤维素被认为是 100% 生物降解性的行业标准。植物基聚合物的生物降解率几乎达到了纤维素的 100%。定义:可生物降解:能够在生物体的作用下迅速分解。如果某样东西被标注为可生物降解,并不意味着它能在合理的时间内或在所有环境中降解。微塑料:长度在 500 微米至 5 毫米之间的塑料碎片。关于微塑料及其对环境和人类健康的影响,还有很多未知数。聚合物: 大分子:由较小的重复分子(称为单体)组成。所有塑料都是聚合物,但并非所有聚合物都是塑料。石油基(EVA)和植物基(TPU-FC1)微塑料的粒子计数显示,随着时间的推移,EVA 几乎没有生物降解,而 TPU 在第 200 天时已基本消失。接下来,研究小组使用了水漂浮法。由于塑料不溶于水且会漂浮,因此很容易从水面上舀起。每隔 90 天和 200 天,几乎 100%的石油基微塑料都被回收,这意味着它们都没有发生生物降解。另一方面,90 天后,只有 32% 的藻类微塑料被回收,这表明超过三分之二的藻类微塑料已经生物降解。200 天后,只有 3% 的微塑料被回收,表明 97% 的微塑料已经消失。最后一项测量是通过气相色谱/质谱仪(GCMS)进行化学分析,检测到了用于制造塑料的单体的存在,表明聚合物正在被分解为其起始植物材料。扫描电子显微镜进一步显示了微生物如何在堆肥过程中定植于可生物降解的微塑料中。论文共同作者、生物科学学院教授兼 Algenesis 公司联合创始人斯蒂芬-梅菲尔德(Stephen Mayfield)说:"这种材料是第一种 在使用过程中不会产生微塑料的塑料。这不仅仅是针对产品生命周期末端和拥挤的垃圾填埋场的可持续解决方案,也是一种不会让我们生病的塑料 。"在通往可行性的漫长道路上,创造石油基塑料的环保型替代品只是其中的一部分。目前的挑战是如何将这种新材料用于原本为传统塑料制造的现有生产设备上,而 Algenesis 公司在这方面正在取得进展。他们已与多家公司合作,生产使用加州大学圣地亚哥分校开发的植物基聚合物的产品,包括用于涂层织物的特瑞堡公司和用于生产手机壳的犀牛盾公司。Burkart 表示:"当我们开始这项工作时,有人告诉我们这是不可能的。现在我们看到了不同的现实。还有很多工作要做,但我们希望给人们带来希望,这是可能做到的。" ... PC版: 手机版:

相关推荐

封面图片

突破性的植物聚合物有望打破微塑料循环

突破性的植物聚合物有望打破微塑料循环 微塑料是从日常塑料制品中脱落的微小、几乎不可破坏的碎片。随着我们对微塑料的了解越来越多,情况也越来越糟。我们已经在海洋和土壤中发现了大量的微塑料,现在我们又在最不可能的地方发现了它们:我们的动脉、肺部甚至胎盘。微塑料需要 100 到 1000 年的时间才能分解,与此同时,我们的地球和身体每天都在受到这些材料的污染。寻找传统石油基塑料和微塑料的可行替代品从未像现在这样重要。加州大学圣迭戈分校的科学家和材料科学公司 Algenesis 的最新研究表明,他们研制的植物基聚合物能在七个月内完成生物降解,即使是微塑料级别的生物降解。这篇论文发表在《科学报告》杂志上,其作者都是加州大学圣地亚哥分校的教授、校友或前研究科学家。"我们刚刚开始了解微塑料的影响。我们对环境和健康影响的了解还只是皮毛,"论文作者之一、Algenesis 公司联合创始人、化学与生物化学教授 Michael Burkart 说。"我们正试图为已经存在的材料寻找替代品,并确保这些替代品在使用寿命结束后能够生物降解,而不是在环境中聚集,这并不容易。"论文的另一位作者罗伯特-波默罗伊(Robert Pomeroy)说:"大约六年前,当我们首次创造出这种藻基聚合物时,我们的初衷一直是希望它能够完全生物降解,我们有大量数据表明,我们的材料正在堆肥中消失,但这是我们第一次在微粒水平上对其进行测量。他同时也是化学与生物化学教授和 Algenesis 公司的共同创始人。为了测试其生物降解性,研究小组将其产品研磨成细微颗粒,并使用三种不同的测量工具来确认,当将其放入堆肥中时,这种材料正在被微生物消化。第一个工具是呼吸计。当微生物分解堆肥材料时,它们会释放二氧化碳(CO2),呼吸计会对其进行测量。这些结果与纤维素的分解进行了比较,纤维素被认为是 100% 生物降解性的行业标准。植物基聚合物的生物降解率几乎达到了纤维素的 100%。石油基(EVA)和植物基(TPU-FC1)微塑料的颗粒计数显示,随着时间的推移,EVA 几乎没有生物降解,而 TPU 在第 200 天时已基本消失。资料来源:Algenesis 公司接下来,研究小组使用了水漂浮法。由于塑料不溶于水且会漂浮,因此很容易从水面上舀起。每隔 90 天和 200 天,几乎 100%的石油基微塑料都被回收,这意味着它们都没有发生生物降解。另一方面,90 天后,只有 32% 的藻类微塑料被回收,这表明超过三分之二的藻类微塑料已经生物降解。200 天后,只有 3% 的微塑料被回收,表明 97% 的微塑料已经消失。最后一项测量是通过气相色谱/质谱仪(GCMS)进行化学分析,检测到了用于制造塑料的单体的存在,表明聚合物正在被分解成最初的植物材料。扫描电子显微镜进一步显示了微生物如何在堆肥过程中定植于可生物降解的微塑料中。论文共同作者、生物科学学院教授兼 Algenesis 公司联合创始人斯蒂芬-梅菲尔德(Stephen Mayfield)说:"这种材料是第一种在使用过程中不会产生微塑料的塑料。这不仅仅是针对产品生命周期末端和拥挤的垃圾填埋场的可持续解决方案。这实际上是一种不会让我们生病的塑料。"在通往可行性的漫长道路上,创造石油基塑料的环保型替代品只是其中的一部分。目前的挑战是如何将这种新材料用于原本为传统塑料制造的现有生产设备上,而 Algenesis 公司在这方面正在取得进展。他们已与多家公司合作,生产使用加州大学圣地亚哥分校开发的植物基聚合物的产品,包括用于涂层织物的特瑞堡公司和用于生产手机壳的犀牛盾公司。Burkart 表示:"当我们开始这项工作时,有人告诉我们这是不可能的。现在我们看到了不同的现实。还有很多工作要做,但我们希望给人们带来希望。这是可能的。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

不会产生微塑料的藻基塑料已通过测试

不会产生微塑料的藻基塑料已通过测试 在一项新的研究中,加州大学圣地亚哥分校(UC San Diego)和材料科学公司 Algenesis 的研究人员从另一个角度解决了这一问题,他们开发出了一种植物基聚合物,这种聚合物即使被研磨成微塑料,也能在 7 个月内完成生物降解。加州大学圣迭戈分校化学与生物化学教授、Algenesis 公司联合创始人、该研究的作者之一 Michael Burkart 说:"我们刚刚开始了解微塑料的影响。我们正试图为已经存在的材料找到替代品,并确保这些替代品在使用寿命结束后能够生物降解,而不是在环境中聚集。这并不容易。"生物降解是微生物将聚合物分解成更简单分子的过程。它要求聚合物含有微生物产生的塑料降解酶可以接触到的化学键,并且这些微生物可以消耗聚合物分解释放出的分子。注意:所有塑料都是聚合物,但并非所有聚合物都是塑料。化学与生物化学教授、Algenesis 联合创始人兼研究报告作者罗伯特-波默罗伊(Robert Pomeroy)说:"大约六年前,当我们首次创造出这种藻基聚合物时,我们的初衷一直是希望它能够完全生物降解。我们有大量数据表明,我们的材料正在堆肥中消失,但这是我们第一次在微粒水平上对其进行测量。"多年前,波默罗伊、伯卡尔特和分子生物学教授斯蒂芬-梅菲尔德(Stephen Mayfield)的一个将藻类转化为燃料的项目演变成了开发高性能生物可降解聚氨酯的探索。鉴于塑料来自石油,而石油来自藻类,研究人员开始直接用藻油制造塑料。由此产生的藻类聚合物被称为 TPU-FC1,用于制造世界上第一双可生物降解的鞋子,Pomeroy 甚至写了一本关于他的藻基材料的书。在当前的研究中,研究人员使用装有 80 号砂纸的砂带机来生成包括 TPU-FC1 在内的各种材料的微塑料。每种材料都使用了不同的砂带机,以防止交叉污染。他们使用不同的方法来检测微生物是否消化了微塑料。首先,在与家庭堆肥相同的条件下,将微塑料放入天然含有微生物的堆肥中。90 天后,堆肥样本的检查结果显示,TPU-FC1 微颗粒减少了 68%,而 EVA 微颗粒的数量几乎没有变化。200 天后,TPU-FC1 样品中的微塑料粒子数比开始时总体减少了 97%(EVA 粒子数没有变化)。石油基(EVA)和植物基(TPU-FC1)微塑料的粒子计数显示,随着时间的推移,EVA 几乎没有生物降解,而 TPU 到 200 天时已基本消失。图/SC 圣地亚哥研究人员使用一组相同的微塑料和堆肥样本来跟踪二氧化碳 (CO2) 含量,并使用呼吸计进行测量。当微生物分解堆肥时,它们会释放出二氧化碳气体。纯纤维素样品作为内部对照,用于监测背景"二氧化碳演化",这是堆肥中微生物活性的一种测量方法。纤维素在 45 天内达到 75% 的二氧化碳进化量,表明堆肥具有足够的活性。与非生物降解材料的预期结果一样,EVA 微颗粒在 200 天的实验中没有出现二氧化碳进化现象。TPU-FC1 微塑料的生物降解效果显著,在 200 天的时间点上,二氧化碳进化达到 76%。因此,呼吸测定法证实了 TPU-FC1 的生物可降解性,并证明生物降解的结果之一是将微塑料中的碳转化为二氧化碳。由于塑料不溶于水,会漂浮在水面上,很容易被舀出水面,因此研究小组接下来将微塑料加入水中进行测试。每隔 90 天和 200 天,几乎 100%的 EVA 微型塑料都被回收,这意味着它们都没有发生生物降解。相比之下,90 天后,只有 32% 的 TPU-FC1 微颗粒被回收,200 天后,只有 3% 的微颗粒被回收,这表明 97% 的微颗粒已经生物降解。对藻类塑料进行的化学分析检测到了用于制造塑料的单体,这表明聚合物已被分解为最初的植物材料。进一步分析发现,细菌能够将 TPU-FC1 用作碳源,并证实它们能够将其分解。该研究的另一位作者斯蒂芬-梅菲尔德(Stephen Mayfield)说:"这种材料是第一种在使用过程中不会产生微塑料的塑料。这不仅仅是针对产品生命周期末端和我们拥挤的垃圾填埋场的可持续解决方案。这实际上是一种不会让我们生病的塑料。"使用传统制造设备制造生物可降解塑料具有挑战性,但 Algenesis 公司正在取得进展。该公司已与特瑞堡(Trelleborg)合作生产涂层织物,并与犀牛盾(RhinoShield)合作生产手机保护壳。伯卡特说:"当我们开始这项工作时,有人告诉我们这是不可能的。现在我们看到了不同的现实。还有很多工作要做,但我们希望给人们带来希望。这是可能的。"这项研究发表在《科学报告》杂志上。 ... PC版: 手机版:

封面图片

环保技术新突破:科学家利用植物纤维素制成新型聚合物

环保技术新突破:科学家利用植物纤维素制成新型聚合物 科学家们设计出了一种利用纤维素生产可回收且稳定的聚合物的方法,为传统塑料提供了一种可持续的替代品。这一研究成果为生产环保材料提供了新的可能性。上图为本研究开发的新型可回收聚合物制成的透明薄膜。资料来源:Feng Li他们开发出了一种方便、多用途的方法,利用从植物纤维素中提取的化学物质制造各种聚合物;最重要的是,这些聚合物可以完全回收利用。该方法发表在《ACS Macro Letters》杂志上。纤维素是植物生物质中最丰富的成分之一,是所有植物细胞周围坚韧细胞壁的关键部分。纤维素很容易从稻草和锯末等植物废料中获取,因此,将纤维素用作聚合物生产的原料不会减少用于粮食生产的农业用地。纤维素是一种长链多糖聚合物,即由多个糖基(特别是葡萄糖)通过化学键连接而成。为了制造新型聚合物,北海道研究小组使用了两种市售的小分子,即由纤维素制成的左旋葡糖烯酮(LGO)和二氢左旋葡糖烯酮(Cyrene)。他们开发了新颖的化学工艺,将 LGO 和 Cyrene 转化为各种非天然多糖聚合物。通过改变聚合物的精确化学结构,可以生成不同的材料,用于各种可能的应用。"我们面临的最大挑战是控制将较小单体分子连接在一起的聚合反应,以及获得对普通应用足够稳定的多糖材料,同时还能在特定化学条件下被分解和回收。"左起研究小组的佐藤俊文、水上雄太、李锋和矶野拓也。图片来源:李锋李补充说,研究过程中最大的惊喜是他们制作的聚合物薄膜具有很高的透明度,这对于这些聚合物似乎最适合的专业应用来说可能至关重要。另一位通讯作者 Toshifumi Satoh 教授补充说:由于这些材料相当坚硬,可能难以用作塑料袋等柔性塑料材料,因此我认为它们更适合用作光学、电子和生物医学应用领域的高性能材料。世界各地的其他研究小组也在探索用植物制造塑料替代聚合物的潜力,其中一些"生物塑料"已经可以在市场上买到,但佐藤的研究小组为这一快速发展的领域增添了一个重要的新机会。研究小组现在计划探索更多的可能性,但可行的结构变化非常多,因此他们希望与计算化学、人工智能和自动合成方面的专家联手探索这些选择。"我们希望这项工作能开发出多种有用的非天然多糖聚合物,使其成为从生物质到高效回收的可持续合成闭环的一部分。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

新型植物塑料释放的微塑料减少9倍

新型植物塑料释放的微塑料减少9倍 最新研究表明,植物基塑料在海洋环境中释放的微塑料远远少于传统塑料,这表明植物基塑料可能是一种更环保的选择。不过,要全面评估它们的影响,继续开展研究至关重要。最近的一项研究发现,一种新型植物基塑料材料在阳光和海水的作用下释放的微塑料比传统塑料少九倍。这项研究由朴茨茅斯大学和比利时法兰德斯海洋研究所(VLIZ)的研究人员共同完成,他们考察了两种不同类型的塑料在恶劣条件下的降解情况。一种由天然原料制成的生物基塑料材料在强烈的紫外线和海水中暴露 76 天(相当于欧洲中部地区 24 个月的日晒)后,其耐受性优于由石油衍生物制成的传统塑料。该大学机械与设计工程学院的机械工程学教授、Revolution Plastics 的成员 Hom Dhakal 说:"生物基塑料作为传统塑料的替代品正受到越来越多的关注,但人们对其在海洋环境中造成微塑料污染的潜在来源知之甚少。"Hom Dhakal 教授。资料来源:朴茨茅斯大学"了解这些材料在极端环境中的表现非常重要,这样我们就能预测它们在海洋应用中(如建造船体)的工作情况,以及它们可能对海洋生物产生的影响。通过了解不同类型塑料对环境的影响,我们可以做出更好的选择来保护我们的海洋"。根据国际塑料海洋组织(Plastic Oceans International Organization)的数据,每天每分钟都有相当于一卡车的塑料被倒入海洋。当这些塑料垃圾暴露在环境中时,就会分解成小于 5 毫米的微粒。这些微粒被称为"微塑料",已在大多数海洋生态系统中观察到,对水生生物构成严重威胁。Dhakal 教授解释说:"我们希望将不可生物降解且难以回收利用的传统工业聚合物聚丙烯与可生物降解的聚合物聚乳酸(PLA)进行对比。尽管我们的研究结果表明,聚乳酸释放的微塑料较少,这意味着使用植物性塑料而不是油性塑料似乎是减少海洋塑料污染的一个好主意,但我们需要小心,因为微塑料仍然明显在释放,这仍然是一个令人担忧的问题。"研究还发现,释放出的微小塑料碎片的大小和形状取决于塑料的类型。与植物基塑料相比,传统塑料释放出的碎片更小,纤维状的形状也更少。Dhakal教授补充说:"总的来说,我们的研究为了解不同类型塑料在环境压力下的行为提供了宝贵的见解,这对我们今后解决塑料污染问题非常重要。我们显然需要继续开展研究并采取积极措施,以减轻微塑料对海洋生态系统的影响。"编译来源:ScitechDailyDOI: 10.1016/j.ecoenv.2024.115981 ... PC版: 手机版:

封面图片

科学家创造出的新材料兼具玻璃聚合物的硬度和凝胶的拉伸性

科学家创造出的新材料兼具玻璃聚合物的硬度和凝胶的拉伸性 研究人员创造了一种名为"玻璃凝胶"的新型材料,这种材料与玻璃聚合物一样坚硬,但如果施加足够的力,它可以拉伸到原长度的五倍,而不会断裂。玻璃态凝胶的一个关键特点是,它们的液体含量超过 50%,这使得它们比具有类似物理特性的普通塑料更能有效导电。资料来源:北卡罗来纳州立大学王美香科学家们发明了一种名为"玻璃凝胶"的新型材料,这种材料尽管含有 50% 以上的液体,但却非常坚硬且不易破裂。加上玻璃凝胶易于生产,这种材料有望应用于多种领域。凝胶体和玻璃态聚合物是历来被视为截然不同的两类材料。玻璃态聚合物质地坚硬,通常比较脆。它们用于制造水瓶或飞机窗户等物品。凝胶(如隐形眼镜)含有液体,柔软而有弹性。"我们创造了一类被称为玻璃凝胶的材料,这种材料和玻璃聚合物一样坚硬,但如果施加足够的力,它可以拉伸到原来长度的五倍,而不会断裂,"这项研究论文的通讯作者、北卡罗来纳州立大学化学和生物分子工程系卡米尔和亨利-德雷福斯教授迈克尔-迪基(Michael Dickey)说。"更重要的是,一旦材料被拉伸,你就可以通过加热使其恢复原状。此外,玻璃凝胶的表面具有很强的粘性,这在硬质材料中并不多见。"该论文的共同第一作者、北卡罗来纳州立大学博士后研究员王美香说:"玻璃凝胶的一个关键特点是,它们的液体含量超过 50%,这使得它们比物理特性相当的普通塑料更能高效导电。考虑到这些材料所具有的许多独特性质,我们对它们的用途感到乐观。"玻璃态凝胶,顾名思义,实际上是一种结合了玻璃态聚合物和凝胶最诱人特性的材料。为了制造玻璃态凝胶,研究人员首先将玻璃态聚合物的液态前体与离子液体混合。将这种混合液体倒入模具中,暴露在紫外线下,使材料"固化"。然后移除模具,留下玻璃状凝胶。"离子液体是一种溶剂,就像水一样,但完全由离子组成,"Dickey 说。"通常在聚合物中添加溶剂时,溶剂会推开聚合物链,使聚合物变得柔软、可伸展。这就是为什么湿隐形眼镜柔软,而干隐形眼镜不柔软的原因。在玻璃态凝胶中,溶剂会将聚合物分子链推开,使其像凝胶一样具有拉伸性。然而,溶剂中的离子会强烈吸引聚合物,从而阻止聚合物链移动。链条无法移动就使其成为玻璃状。最终的结果是,由于吸引力的作用,材料变得坚硬,但由于额外的间距,材料仍然能够拉伸。"研究人员发现,玻璃凝胶可以用各种不同的聚合物和离子液体制成,但并非所有类别的聚合物都能用于制造玻璃凝胶。Dickey说:"带电或极性的聚合物有望用于玻璃凝胶,因为它们会被离子液体吸引。也许玻璃凝胶最吸引人的特点就是它们的粘性,因为虽然我们知道是什么让它们变得坚硬和可拉伸,但我们只能猜测是什么让它们如此具有粘性。"在测试中,研究人员发现,玻璃状凝胶即使含有 50-60% 的液体,也不会蒸发或变干。他们还认为,玻璃凝胶易于制造,因此有望得到实际应用。Dickey 说:"制造玻璃态凝胶是一个简单的过程,可以通过在任何类型的模具中固化或 3D 打印来实现。大多数具有类似机械性能的塑料都要求制造商将聚合物作为原料进行生产,然后将聚合物运输到另一个工厂,在那里聚合物被熔化并形成最终产品。我们很高兴看到如何使用玻璃凝胶,并愿意与合作者一起确定这些材料的应用"。这篇题为"由溶剂增韧的玻璃凝胶"的论文于 6 月 19 日发表在《自然》杂志上。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

"可生物降解"吸管在海水中的寿命到底有多长?

"可生物降解"吸管在海水中的寿命到底有多长? 在海水中浸泡 16 周后,泡沫制成的生物塑料吸管(如图所示)的分解速度至少是固体吸管的两倍。来源:改编自《ACS 可持续化学与工程 2024》,DOI: 10.1021/acssuschemeng.3c07391但这些替代品在海洋环境中的效果如何?根据发表在《美国化学学会可持续化学与工程》(ACS Sustainable Chemistry & Engineering)上的研究,某些市售的生物塑料吸管和纸质吸管在沿海海洋系统中会在 8 到 20 个月内分解,而选择泡沫吸管会大大加快这一过程。在海水中浸泡 16 周后,泡沫制成的生物塑料吸管的分解速度至少是固体吸管(如图所示)的两倍。来源:改编自《ACS 可持续化学与工程 2024》,DOI: 10.1021/acssuschemeng.3c07391为治理塑料污染,美国一些地区限制在吸管中使用聚丙烯(PP)等传统聚合物。这些政策导致由纸或生物塑料制成的一次性用品市场不断增长。然而,替代材料需要保持功能性,这样它们才不会在喝第一口水后翻倒,但如果在土壤、淡水或盐水中浸泡以后就会散架。虽然下一代生物塑料,如二醋酸纤维素(CDA)和聚羟基烷酸酯(PHA),可能能够满足这两个要求,但与其他材料相比,这些材料制成的产品在海洋中能持续多长时间才能完全降解,人们对此知之甚少。因此,布莱恩-詹姆斯、科林-沃德及其同事利用真实海水进行了实验,研究不同吸管的环境寿命,并寻找一种加速下一代生物塑料分解的方法。在最初的测试中,研究人员从市场上出售的吸管上剪下一英寸长的碎片,这些吸管由涂布或未涂布纸、聚丙烯聚合物或 CDA、PHA 或聚乳酸(PLA) 生物塑料制成。然后,将这些吸管悬挂在大型水箱中的导线上,常温海水在其中流动。研究小组发现,16 周后,纸吸管、CDA 吸管和 PHA 吸管的重量减少了 25-50%。研究人员预计,这些可降解吸管在沿海海洋中完全分解的时间分别为:纸 10 个月、PHA 15 个月、CDA 20 个月。此外,分解样本上的生物膜含有已知能代谢多种聚合物的微生物。相反,聚丙烯(PP)和聚乳酸(PLA)吸管没有可测量的重量变化,这表明它们可以在海水中存活多年。接下来,在相同的实验条件下,研究人员研究了将 CDA 材料的结构从固体变为泡沫对生物塑料环境寿命的影响。他们观察到,CDA 泡沫的分解速度至少是固体版本的两倍,据他们估计,用泡沫原型制成的吸管在海水中8个月就会分解,这是所有测试材料中寿命最短的。在证明某些生物塑料吸管不太可能长期保持完好无损之后,研究人员建议,简单的改变,如改用泡沫材料,可以进一步缩短吸管的使用寿命。编译自/scitechdaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人