新型植物塑料释放的微塑料减少9倍

新型植物塑料释放的微塑料减少9倍 最新研究表明,植物基塑料在海洋环境中释放的微塑料远远少于传统塑料,这表明植物基塑料可能是一种更环保的选择。不过,要全面评估它们的影响,继续开展研究至关重要。最近的一项研究发现,一种新型植物基塑料材料在阳光和海水的作用下释放的微塑料比传统塑料少九倍。这项研究由朴茨茅斯大学和比利时法兰德斯海洋研究所(VLIZ)的研究人员共同完成,他们考察了两种不同类型的塑料在恶劣条件下的降解情况。一种由天然原料制成的生物基塑料材料在强烈的紫外线和海水中暴露 76 天(相当于欧洲中部地区 24 个月的日晒)后,其耐受性优于由石油衍生物制成的传统塑料。该大学机械与设计工程学院的机械工程学教授、Revolution Plastics 的成员 Hom Dhakal 说:"生物基塑料作为传统塑料的替代品正受到越来越多的关注,但人们对其在海洋环境中造成微塑料污染的潜在来源知之甚少。"Hom Dhakal 教授。资料来源:朴茨茅斯大学"了解这些材料在极端环境中的表现非常重要,这样我们就能预测它们在海洋应用中(如建造船体)的工作情况,以及它们可能对海洋生物产生的影响。通过了解不同类型塑料对环境的影响,我们可以做出更好的选择来保护我们的海洋"。根据国际塑料海洋组织(Plastic Oceans International Organization)的数据,每天每分钟都有相当于一卡车的塑料被倒入海洋。当这些塑料垃圾暴露在环境中时,就会分解成小于 5 毫米的微粒。这些微粒被称为"微塑料",已在大多数海洋生态系统中观察到,对水生生物构成严重威胁。Dhakal 教授解释说:"我们希望将不可生物降解且难以回收利用的传统工业聚合物聚丙烯与可生物降解的聚合物聚乳酸(PLA)进行对比。尽管我们的研究结果表明,聚乳酸释放的微塑料较少,这意味着使用植物性塑料而不是油性塑料似乎是减少海洋塑料污染的一个好主意,但我们需要小心,因为微塑料仍然明显在释放,这仍然是一个令人担忧的问题。"研究还发现,释放出的微小塑料碎片的大小和形状取决于塑料的类型。与植物基塑料相比,传统塑料释放出的碎片更小,纤维状的形状也更少。Dhakal教授补充说:"总的来说,我们的研究为了解不同类型塑料在环境压力下的行为提供了宝贵的见解,这对我们今后解决塑料污染问题非常重要。我们显然需要继续开展研究并采取积极措施,以减轻微塑料对海洋生态系统的影响。"编译来源:ScitechDailyDOI: 10.1016/j.ecoenv.2024.115981 ... PC版: 手机版:

相关推荐

封面图片

突破性的植物聚合物有望打破微塑料循环

突破性的植物聚合物有望打破微塑料循环 微塑料是从日常塑料制品中脱落的微小、几乎不可破坏的碎片。随着我们对微塑料的了解越来越多,情况也越来越糟。我们已经在海洋和土壤中发现了大量的微塑料,现在我们又在最不可能的地方发现了它们:我们的动脉、肺部甚至胎盘。微塑料需要 100 到 1000 年的时间才能分解,与此同时,我们的地球和身体每天都在受到这些材料的污染。寻找传统石油基塑料和微塑料的可行替代品从未像现在这样重要。加州大学圣迭戈分校的科学家和材料科学公司 Algenesis 的最新研究表明,他们研制的植物基聚合物能在七个月内完成生物降解,即使是微塑料级别的生物降解。这篇论文发表在《科学报告》杂志上,其作者都是加州大学圣地亚哥分校的教授、校友或前研究科学家。"我们刚刚开始了解微塑料的影响。我们对环境和健康影响的了解还只是皮毛,"论文作者之一、Algenesis 公司联合创始人、化学与生物化学教授 Michael Burkart 说。"我们正试图为已经存在的材料寻找替代品,并确保这些替代品在使用寿命结束后能够生物降解,而不是在环境中聚集,这并不容易。"论文的另一位作者罗伯特-波默罗伊(Robert Pomeroy)说:"大约六年前,当我们首次创造出这种藻基聚合物时,我们的初衷一直是希望它能够完全生物降解,我们有大量数据表明,我们的材料正在堆肥中消失,但这是我们第一次在微粒水平上对其进行测量。他同时也是化学与生物化学教授和 Algenesis 公司的共同创始人。为了测试其生物降解性,研究小组将其产品研磨成细微颗粒,并使用三种不同的测量工具来确认,当将其放入堆肥中时,这种材料正在被微生物消化。第一个工具是呼吸计。当微生物分解堆肥材料时,它们会释放二氧化碳(CO2),呼吸计会对其进行测量。这些结果与纤维素的分解进行了比较,纤维素被认为是 100% 生物降解性的行业标准。植物基聚合物的生物降解率几乎达到了纤维素的 100%。石油基(EVA)和植物基(TPU-FC1)微塑料的颗粒计数显示,随着时间的推移,EVA 几乎没有生物降解,而 TPU 在第 200 天时已基本消失。资料来源:Algenesis 公司接下来,研究小组使用了水漂浮法。由于塑料不溶于水且会漂浮,因此很容易从水面上舀起。每隔 90 天和 200 天,几乎 100%的石油基微塑料都被回收,这意味着它们都没有发生生物降解。另一方面,90 天后,只有 32% 的藻类微塑料被回收,这表明超过三分之二的藻类微塑料已经生物降解。200 天后,只有 3% 的微塑料被回收,表明 97% 的微塑料已经消失。最后一项测量是通过气相色谱/质谱仪(GCMS)进行化学分析,检测到了用于制造塑料的单体的存在,表明聚合物正在被分解成最初的植物材料。扫描电子显微镜进一步显示了微生物如何在堆肥过程中定植于可生物降解的微塑料中。论文共同作者、生物科学学院教授兼 Algenesis 公司联合创始人斯蒂芬-梅菲尔德(Stephen Mayfield)说:"这种材料是第一种在使用过程中不会产生微塑料的塑料。这不仅仅是针对产品生命周期末端和拥挤的垃圾填埋场的可持续解决方案。这实际上是一种不会让我们生病的塑料。"在通往可行性的漫长道路上,创造石油基塑料的环保型替代品只是其中的一部分。目前的挑战是如何将这种新材料用于原本为传统塑料制造的现有生产设备上,而 Algenesis 公司在这方面正在取得进展。他们已与多家公司合作,生产使用加州大学圣地亚哥分校开发的植物基聚合物的产品,包括用于涂层织物的特瑞堡公司和用于生产手机壳的犀牛盾公司。Burkart 表示:"当我们开始这项工作时,有人告诉我们这是不可能的。现在我们看到了不同的现实。还有很多工作要做,但我们希望给人们带来希望。这是可能的。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

不会产生微塑料的藻基塑料已通过测试

不会产生微塑料的藻基塑料已通过测试 在一项新的研究中,加州大学圣地亚哥分校(UC San Diego)和材料科学公司 Algenesis 的研究人员从另一个角度解决了这一问题,他们开发出了一种植物基聚合物,这种聚合物即使被研磨成微塑料,也能在 7 个月内完成生物降解。加州大学圣迭戈分校化学与生物化学教授、Algenesis 公司联合创始人、该研究的作者之一 Michael Burkart 说:"我们刚刚开始了解微塑料的影响。我们正试图为已经存在的材料找到替代品,并确保这些替代品在使用寿命结束后能够生物降解,而不是在环境中聚集。这并不容易。"生物降解是微生物将聚合物分解成更简单分子的过程。它要求聚合物含有微生物产生的塑料降解酶可以接触到的化学键,并且这些微生物可以消耗聚合物分解释放出的分子。注意:所有塑料都是聚合物,但并非所有聚合物都是塑料。化学与生物化学教授、Algenesis 联合创始人兼研究报告作者罗伯特-波默罗伊(Robert Pomeroy)说:"大约六年前,当我们首次创造出这种藻基聚合物时,我们的初衷一直是希望它能够完全生物降解。我们有大量数据表明,我们的材料正在堆肥中消失,但这是我们第一次在微粒水平上对其进行测量。"多年前,波默罗伊、伯卡尔特和分子生物学教授斯蒂芬-梅菲尔德(Stephen Mayfield)的一个将藻类转化为燃料的项目演变成了开发高性能生物可降解聚氨酯的探索。鉴于塑料来自石油,而石油来自藻类,研究人员开始直接用藻油制造塑料。由此产生的藻类聚合物被称为 TPU-FC1,用于制造世界上第一双可生物降解的鞋子,Pomeroy 甚至写了一本关于他的藻基材料的书。在当前的研究中,研究人员使用装有 80 号砂纸的砂带机来生成包括 TPU-FC1 在内的各种材料的微塑料。每种材料都使用了不同的砂带机,以防止交叉污染。他们使用不同的方法来检测微生物是否消化了微塑料。首先,在与家庭堆肥相同的条件下,将微塑料放入天然含有微生物的堆肥中。90 天后,堆肥样本的检查结果显示,TPU-FC1 微颗粒减少了 68%,而 EVA 微颗粒的数量几乎没有变化。200 天后,TPU-FC1 样品中的微塑料粒子数比开始时总体减少了 97%(EVA 粒子数没有变化)。石油基(EVA)和植物基(TPU-FC1)微塑料的粒子计数显示,随着时间的推移,EVA 几乎没有生物降解,而 TPU 到 200 天时已基本消失。图/SC 圣地亚哥研究人员使用一组相同的微塑料和堆肥样本来跟踪二氧化碳 (CO2) 含量,并使用呼吸计进行测量。当微生物分解堆肥时,它们会释放出二氧化碳气体。纯纤维素样品作为内部对照,用于监测背景"二氧化碳演化",这是堆肥中微生物活性的一种测量方法。纤维素在 45 天内达到 75% 的二氧化碳进化量,表明堆肥具有足够的活性。与非生物降解材料的预期结果一样,EVA 微颗粒在 200 天的实验中没有出现二氧化碳进化现象。TPU-FC1 微塑料的生物降解效果显著,在 200 天的时间点上,二氧化碳进化达到 76%。因此,呼吸测定法证实了 TPU-FC1 的生物可降解性,并证明生物降解的结果之一是将微塑料中的碳转化为二氧化碳。由于塑料不溶于水,会漂浮在水面上,很容易被舀出水面,因此研究小组接下来将微塑料加入水中进行测试。每隔 90 天和 200 天,几乎 100%的 EVA 微型塑料都被回收,这意味着它们都没有发生生物降解。相比之下,90 天后,只有 32% 的 TPU-FC1 微颗粒被回收,200 天后,只有 3% 的微颗粒被回收,这表明 97% 的微颗粒已经生物降解。对藻类塑料进行的化学分析检测到了用于制造塑料的单体,这表明聚合物已被分解为最初的植物材料。进一步分析发现,细菌能够将 TPU-FC1 用作碳源,并证实它们能够将其分解。该研究的另一位作者斯蒂芬-梅菲尔德(Stephen Mayfield)说:"这种材料是第一种在使用过程中不会产生微塑料的塑料。这不仅仅是针对产品生命周期末端和我们拥挤的垃圾填埋场的可持续解决方案。这实际上是一种不会让我们生病的塑料。"使用传统制造设备制造生物可降解塑料具有挑战性,但 Algenesis 公司正在取得进展。该公司已与特瑞堡(Trelleborg)合作生产涂层织物,并与犀牛盾(RhinoShield)合作生产手机保护壳。伯卡特说:"当我们开始这项工作时,有人告诉我们这是不可能的。现在我们看到了不同的现实。还有很多工作要做,但我们希望给人们带来希望。这是可能的。"这项研究发表在《科学报告》杂志上。 ... PC版: 手机版:

封面图片

新型生物塑料吸管在海洋中的降解速度比纸还快

新型生物塑料吸管在海洋中的降解速度比纸还快 世界卫生组织国际研究所(WHOI)的一项研究表明,一些可生物降解吸管在海洋环境中可在 16 周内降解 50%,是传统塑料的可持续替代品,有助于减少海洋污染。吸管是海岸线上最常见的塑料垃圾之一。随着塑料产品的生产、消费和处理不断增加,科学家和制造商们正在开发替代材料,这些材料既能发挥同样的功效,又不会加剧持续的环境塑料污染。但并非所有塑料都是一样的不同的制造商有不同的基础聚合物配方(如聚乳酸(PLA)和聚丙烯(PP))和化学添加剂。这意味着不同的塑料配方在环境中的表现不同,在海洋中的分解速度也不同。伍兹霍尔海洋研究所(WHOI)的科学家们一直在努力量化各种塑料制品的环境寿命,以回答一个悬而未决的问题:吸管在海洋中的寿命有多长?吸管是最常见的海洋垃圾来源之一。研究人员说,我们对塑料在海洋中的持续时间缺乏确切的了解,但科学支持放弃使用这种材料。图片来源:Bryan James/©伍兹霍尔海洋研究所吸管降解的测试和结果在发表于《美国化学学会可持续化学与工程》(ACS Sustainable Chemistry & Engineering)的一篇新论文中,世界卫生组织(WHOI)的科学家科林-沃德(Collin Ward)、布莱恩-詹姆斯(Bryan James)、克里斯-雷迪(Chris Reddy)和孙彦辰(Yanchen Sun)将不同类型的塑料和纸质饮管进行了对比,看看哪种塑料在近海降解最快。他们与生物塑料制造公司伊士曼(Eastman)的科学家合作,后者为这项研究提供了资金、共同作者和材料。沃德说:"我们对塑料在海洋中的寿命缺乏确切的了解,因此我们一直在设计测量这些材料降解速度的方法。事实证明,在这种情况下,有一些生物塑料吸管实际上降解得相当快,这是个好消息。"世卫组织环境系统实验室对不同类型材料制成的吸管进行了为期16周的降解观察。吸管放置的水箱中不断有来自玛莎葡萄园湾的海水流入。图片来源:Rachel Mann/©伍兹霍尔海洋研究所生物可降解吸管的发展前景他们采用的方法是将八种不同类型的吸管悬浮在马萨诸塞州玛莎葡萄园湾持续流动的海水中。这种方法还控制了温度、光照和其他环境变量,以模拟自然海洋环境。在 16 周的时间里,对所有吸管的降解迹象进行了监测,并对吸管上生长的微生物群落进行了特征描述。詹姆斯说:"我的兴趣一直是了解塑料的命运、持久性和毒性,以及我们如何利用这些信息设计出对人类和地球更有益的下一代材料。我们拥有独特的能力,可以在环境系统实验室的水箱中将海洋环境带到陆地上。它为我们提供了一个非常受控的天然海水环境。"他们测试了由CDA、聚羟基烷酸酯(PHA)、纸、聚乳酸和聚丙烯制成的吸管。在吸管浸没在水箱中的几周内,CDA、PHA 和纸吸管降解了多达 50%,预计在近海的环境寿命为 10-20 个月。聚乳酸和聚丙烯吸管则没有明显的降解迹象。吸管材料对环境的影响随后,科学家们比较了两种由 CDA 制成的吸管一种是固体,另一种是泡沫,均由伊士曼公司提供。用泡沫 CDA 制成的吸管是一个原型,目的是观察增加表面积是否会加速分解。他们发现,泡沫吸管的降解速度比固体吸管快 184%,因此预计的环境寿命比纸质吸管短。詹姆斯说:"这种泡沫吸管的独特之处在于,它的预期使用寿命比纸质吸管短,但却保留了塑料吸管或生物塑料吸管的特性,"作者说,与纸质吸管相比,泡沫吸管有望成为传统塑料吸管的替代品,因为纸质吸管在海洋中会迅速降解,但却会因潮湿而影响用户体验。工业与环境视角"这项研究为吸管制造商在选择吸管材料时提供了明智、透明的数据,因而具有极大的价值。"伊士曼企业创新副总裁杰夫-卡贝克(Jeff Carbeck)说:"更重要的是,它让我们确信,基于CDA的吸管不会加剧持续的塑料污染,同时也表明吸管制造商致力于提供可持续产品,降低对海洋生物的风险。"塑料带来的持久挑战科学支持摒弃传统塑料材料。塑料污染会对人类和生态系统造成危害,塑料工业也是气候变化的主要因素之一,其整个生命周期内的温室气体排放量约占总排放量的 4%至 5%。在过去的 50 年里,塑料垃圾在全球海洋和海洋食物链中变得无处不在,因此,我们必须找到可持续利用、有助于从线性经济向循环经济转变、并能在意外泄漏到环境中时分解的新材料。"虽然有些人力主摒弃塑料,但现实情况是塑料将继续存在。我们正在努力接受这样一个事实,即这些材料将被消费者使用,然后我们可以与公司合作,尽量减少这些材料泄漏到环境中造成的影响,"Ward 说。合作促进可持续解决方案"我们认识到测试、验证和了解基于CDA的产品的海洋降解的重要性,但缺乏必要的资源,"Carbeck说。"我们知道世卫组织海洋研究所拥有专业知识和设施,因此我们参与了应对这一挑战的合作努力。这种伙伴关系展示了产学合作在推进共同目标和产生积极影响方面的力量。"研究小组还发现,降解吸管上的微生物群落对每种吸管材料来说都是独一无二的。然而,尽管化学结构大相径庭,两种非降解吸管上的微生物群落却相同。这进一步证明,本地微生物正在降解可生物降解的吸管,而不可生物降解的吸管可能会在海洋中持续存在。沃德说:"我们对塑料污染对海洋健康的影响的认识还很不确定,这主要是因为我们不知道这些材料的长期命运。他和研究团队的其他成员计划继续测量塑料材料的降解性,希望能为塑料行业的下一步发展提供指导。与材料制造商合作有很多优势,包括可以使用分析设施,了解和接触他们的材料,而这些是在自己的孤岛上工作所无法获得的。"我们试图优化他们的产品,使其在环境中降解,最终造福地球。"主要收获 并非所有塑料制品都是一样的,有些塑料制品在海洋中的寿命比其他塑料制品长。世卫组织工业研究所的科学家们多年来一直致力于量化各种塑料制品的环境寿命,以确定哪些塑料制品在海洋中的寿命最短,哪些最长。为了确定哪些塑料制品会在海洋中持续存在,研究小组在重现自然海洋环境的大型水箱中对不同产品进行了测试。他们首先关注的是饮用水吸管,因为吸管是海滩清理中发现的最常见的塑料垃圾形式之一。作者发现,由二醋酸纤维素(CDA)、聚羟基烷酸酯(PHA)和纸制成的吸管在 16 周内降解了多达 50%。它们都有独特的微生物群落,有助于分解材料。伊士曼公司用发泡 CDA 制作的原型吸管比固体吸管降解得更快,这意味着改变吸管的表面积可以加快降解过程。科学支持摒弃持久性塑料,因此,确保新材料在泄漏到环境中时能够分解,并且不会进一步污染海洋就变得更加重要。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

加州大学研发植物基聚合物 可在七个月内降解消失

加州大学研发植物基聚合物 可在七个月内降解消失 寻找传统石油基塑料和微塑料的可行替代品从未像现在这样重要。加州大学圣迭戈分校的科学家和材料科学公司 Algenesis 的最新研究表明,他们的植物基聚合物能在七个月内完成生物降解,即使是微塑料级别的生物降解。这篇论文发表在《自然-科学报告》上,其作者都是加州大学圣地亚哥分校的教授、校友或前研究科学家 。"我们刚刚开始了解微塑料的影响。我们对环境和健康影响的了解还只是皮毛,"论文作者之一、Algenesis 公司联合创始人、化学与生物化学教授 Michael Burkart 说。"我们正试图为已经存在的材料寻找替代品,并确保这些替代品在使用寿命结束后能够生物降解,而不是在环境中聚集。这并不容易。"论文的另一位作者罗伯特-波默罗伊(Robert Pomeroy)说:"大约六年前,当我们首次创造出这种藻基聚合物时,我们的初衷一直是希望它能够完全生物降解,我们有大量数据表明,我们的材料正在堆肥中消失,但这是我们第一次在微粒水平上对其进行测量。"波默罗伊也是化学与生物化学教授和 Algenesis 公司的共同创始人之一。为了测试其生物降解性,研究小组将其产品研磨成细微颗粒,并使用三种不同的测量工具来确认,当将其放入堆肥中时,这种材料正在被微生物消化。第一个工具是呼吸计。当微生物分解堆肥材料时,它们会释放二氧化碳(CO2),呼吸计会对其进行测量。这些结果与纤维素的分解进行了比较,纤维素被认为是 100% 生物降解性的行业标准。植物基聚合物的生物降解率几乎达到了纤维素的 100%。定义:可生物降解:能够在生物体的作用下迅速分解。如果某样东西被标注为可生物降解,并不意味着它能在合理的时间内或在所有环境中降解。微塑料:长度在 500 微米至 5 毫米之间的塑料碎片。关于微塑料及其对环境和人类健康的影响,还有很多未知数。聚合物: 大分子:由较小的重复分子(称为单体)组成。所有塑料都是聚合物,但并非所有聚合物都是塑料。石油基(EVA)和植物基(TPU-FC1)微塑料的粒子计数显示,随着时间的推移,EVA 几乎没有生物降解,而 TPU 在第 200 天时已基本消失。接下来,研究小组使用了水漂浮法。由于塑料不溶于水且会漂浮,因此很容易从水面上舀起。每隔 90 天和 200 天,几乎 100%的石油基微塑料都被回收,这意味着它们都没有发生生物降解。另一方面,90 天后,只有 32% 的藻类微塑料被回收,这表明超过三分之二的藻类微塑料已经生物降解。200 天后,只有 3% 的微塑料被回收,表明 97% 的微塑料已经消失。最后一项测量是通过气相色谱/质谱仪(GCMS)进行化学分析,检测到了用于制造塑料的单体的存在,表明聚合物正在被分解为其起始植物材料。扫描电子显微镜进一步显示了微生物如何在堆肥过程中定植于可生物降解的微塑料中。论文共同作者、生物科学学院教授兼 Algenesis 公司联合创始人斯蒂芬-梅菲尔德(Stephen Mayfield)说:"这种材料是第一种 在使用过程中不会产生微塑料的塑料。这不仅仅是针对产品生命周期末端和拥挤的垃圾填埋场的可持续解决方案,也是一种不会让我们生病的塑料 。"在通往可行性的漫长道路上,创造石油基塑料的环保型替代品只是其中的一部分。目前的挑战是如何将这种新材料用于原本为传统塑料制造的现有生产设备上,而 Algenesis 公司在这方面正在取得进展。他们已与多家公司合作,生产使用加州大学圣地亚哥分校开发的植物基聚合物的产品,包括用于涂层织物的特瑞堡公司和用于生产手机壳的犀牛盾公司。Burkart 表示:"当我们开始这项工作时,有人告诉我们这是不可能的。现在我们看到了不同的现实。还有很多工作要做,但我们希望给人们带来希望,这是可能做到的。" ... PC版: 手机版:

封面图片

研究发现普通家用清洁产品会释放数万亿微塑料纤维

研究发现普通家用清洁产品会释放数万亿微塑料纤维 如果你曾经拥有一双白色的皮鞋,或者试图擦掉墙上的蜡笔痕迹,那么你可能会感谢三聚氰胺海绵。这种海绵因其独特的研磨特性而闻名,无需额外的清洁剂就能轻松去除顽固污渍和擦痕。然而,这些"神奇"的海绵在磨损后会脱落微塑料纤维。根据美国化学学会《环境科学与技术》杂志发表的一项研究,据估计,三聚氰胺海绵每月在全球造成的微塑料纤维释放量超过一万亿条。三聚氰胺泡沫塑料是由聚(三聚氰胺-甲醛)聚合物制成的这是一种由坚硬的塑料线组成的网络,组装成柔软、轻质的泡沫塑料,具有强悍的磨蚀性,是非常适合擦洗的海绵材料。但是,随着海绵在使用过程中逐渐磨损,泡沫会分解成更小的碎片,这些碎片会释放出微塑料纤维,冲入下水道系统。一旦释放到环境中,这些纤维就会被野生动物吃掉,进入食物链。Yu Su、Baoshan Xing、Rong Ji及其同事希望了解三聚氰胺海绵的密度及其擦洗表面的粗糙度对泡沫分解速度的影响,并计算海绵脱落的微塑料纤维数量。研究小组从三种流行品牌中购买了几块海绵,然后反复在有纹理的金属表面上摩擦,使泡沫磨损。他们发现,与密度较低的海绵相比,密度较高的海绵磨损更慢,产生的微塑料纤维也更少。研究小组确定,每克磨损的海绵大约会释放出 650 万条纤维,并假设所有出售的海绵平均磨损了 10%。为了大致了解每月可释放多少纤维,他们查看了亚马逊 2023 年 8 月的月销售量。假设这些数字保持一致,研究小组计算出每月可释放出 1.55 万亿条三聚氰胺海绵纤维。不过,这个数字只考虑了一家在线零售商,因此实际数量可能会更高。为了最大限度地减少微塑料纤维的排放,研究人员建议生产商生产密度更大、韧性更强、更耐磨损的海绵。此外,他们还建议消费者选择不使用塑料的天然清洁产品,并建议在家中或废水处理厂安装过滤系统,以捕捉脱落的微塑料纤维。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究人员发现微塑料的威胁比已知的更大

研究人员发现微塑料的威胁比已知的更大 总共 17 份海水样本均显示微塑料的浓度高于以往的研究。巴塞尔大学环境科学系博士生、该研究的主要作者克拉拉-莱斯滕施耐德说:"原因在于我们进行的采样类型。"本次研究的重点是大小在 11 到 500 微米之间的颗粒。研究人员通过将水抽入水箱、过滤,然后使用红外光谱分析法进行收集。该地区以前的研究大多使用网眼尺寸约为 300 微米的细网从海洋中收集微塑料颗粒。较小的颗粒会直接穿过这些浮游生物网。新研究结果表明,水中 98.3% 的塑料微粒小于 300 微米,这意味着以前的样本中没有收集到这些微粒。莱斯滕施耐德指出:"南极海洋的污染远远超出了以往研究报告的范围。这项研究发表在《整体环境科学》(Science of the Total Environment)杂志上。"洋流起什么作用?各个样本受到污染的程度不同。在大陆坡和南极斜坡洋流以北采集的近海样本中,微塑料的浓度最高。其原因尚无定论。可能是海岸附近形成的冰层会保留微小的塑料颗粒,只有当冰层融化时,它们才会被释放回水中。洋流也可能在其中发挥了作用。德国海利戈兰 AWI 的 Gunnar Gerdts 认为:"洋流可能像一道屏障,减少了南北方之间的水交换。"可以肯定的是,洋流是一个重要因素,也是该领域许多未决问题的主题。到目前为止,研究人员只对海洋表面的水样进行了研究,而没有对更深处的水样进行研究。这主要是由于考察船采集样本的时间有限,而且设备的抽水能力不足。不过,分析这些数据还是很有启发性的,因为深层洋流与表层洋流差别很大,而且温盐环流会导致与北部地区水团的交换。目前还不清楚这些微塑料最初是如何进入威德尔海的,也不清楚它们是否会离开该地区。强大的南极环极洋流在南纬 60 度左右环绕南极洋流动,可能会阻止它们离开。研究人员还无法断定微塑料的来源。可能的来源包括来自旅游业、渔业和研究行业的区域性船舶运输,以及陆地上的研究站。不过,微塑料也可能通过洋流或大气传输从其他地区进入南极洲。通过研究提高认识研究人员计划下一步重点分析在同一次考察中收集的沉积物样本。海底是独特和敏感生物的家园,也是南极牛鱼(Bovichtidae)的繁殖地。随着南极海洋旅游业的增加,未来污染可能会进一步加剧,对环境和食物链造成进一步影响。尽管如此,莱斯滕施耐德仍然保持着谨慎乐观的态度:"近年来,有关这一主题的研究极大地提高了人们对微塑料对环境和所有生物造成的问题的认识。"她指出,尽管目前还没有一个包罗万象的解决方案,但世界各地的利益相关者都在积极努力,以更好地了解这一问题,并开发出减少塑料污染的创新理念。当然,"每一个有环保意识的人都可以带来积极的变化"。编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人