Epsilon Indi"星震"打破天文纪录和预期

Epsilon Indi"星震"打破天文纪录和预期 国际研究合作测量工作是由一个国际团队完成的,该团队由葡萄牙天体物理学和空间科学研究所领导,成员还包括伯明翰大学的研究人员。测量结果发表在《天文学与天体物理学通讯》(Astronomy & Astrophysics Letters)上。这些地震是利用一种被称为"星震学"的技术探测到的,这种技术测量恒星的振荡。研究小组利用安装在欧洲南方天文台(ESO)甚大望远镜(VLT)上的ESPRESSO摄谱仪,以前所未有的精度记录下了这些振荡。不同频率的声波(p 模式)在恒星内层传播的图像。图片来源:Tania Cunha(波尔图行星生命科学中心/西班牙天文科学研究所)技术突破和天文影响主要作者、波尔图大学天体物理学和空间科学研究所的蒂亚戈-坎潘特(Tiago Campante)说:"这些观测所达到的极高精度水平是一项杰出的技术成就。重要的是,这次探测最终表明,精确的小行星测量学可以精确到表面温度低至4200摄氏度(比太阳表面温度低约1000摄氏度)的冷矮星,从而有效地开辟了观测天体物理学的新领域。"橙矮星最近成为寻找宜居行星和外星生命的焦点。伯明翰物理与天文学学院院长、研究小组成员比尔-查普林(Bill Chaplin)教授说:"这些恒星的预测大小与观测大小不匹配,这对在它们周围寻找行星产生了影响。如果我们使用最成功的行星寻找技术所谓的凌日法我们就能得到行星相对于恒星大小的尺寸;如果我们没有正确地确定恒星的大小,我们发现的任何小行星也会出现同样的情况。"物理与天文学院比尔-查普林教授介绍说:"对振荡的探测将有助于理解和尽量缩小这些差异,并改进恒星的理论模型,这些恒星的预测大小和观测大小之间的不匹配对在它们周围寻找行星有影响"。未来探索对 Epsilon Indi 星震荡的探测将为欧洲航天局(ESA)计划于 2026 年发射的PLATO 任务提供信息,该任务将探测更多橙矮星的震荡。PLATO 还将寻找这些恒星周围的行星。伯明翰负责设计和交付 PLATO 的大部分小行星震荡学管道,其结果将被全世界成千上万的研究人员使用。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

天文仪器中的Skipper CCD打破了宇宙观测的极限

天文仪器中的Skipper CCD打破了宇宙观测的极限 智利 Cerro Pachon 上的南方天体物理研究(SOAR)望远镜。资料来源:NOIRLab研究人员利用 4.1 米长的南方天体物理研究(SOAR)望远镜上的一台仪器,首次获得了使用鳍状电荷耦合器件(CCD)的天文光谱。6月16日,芝加哥大学物理学博士候选人、费米实验室能源部研究生仪器研究奖获得者埃德加-马鲁佛-比利亚潘多在日本举行的光电仪器工程师协会天文望远镜与仪器会议上介绍了这一成果。美国能源部费米国家加速器实验室的宇宙学家亚历克斯-德里卡-瓦格纳(Alex Drlica-Wagner)领导了这一项目,他说:"这是Skipper-CCD技术的一个重要里程碑。这有助于降低未来使用这种技术的风险,这对能源部未来的宇宙学项目至关重要。"这是费米实验室与美国国家科学基金会NOIRLab探测器小组合作,通过实验室指导研发计划构思和启动的一个项目所取得的重要成就。实验室指导研发计划是由能源部赞助的一项国家计划,允许国家实验室在内部资助研发项目,探索新的想法或概念。CCD 于 1969 年在美国发明,四十年后,科学家们因其成就获得了诺贝尔物理学奖。这种设备是由感光像素组成的二维阵列,可将进入的光子转换成电子。传统的 CCD 是最早用于数码相机的图像传感器,尽管其精度受到电子噪声的限制,但仍是天文学等许多科学成像应用的标准。宇宙学家试图通过研究恒星和星系的分布来了解暗物质和暗能量的神秘本质。为此,他们需要先进的技术,以尽可能少的噪声看到更暗、更遥远的天体。现有的 CCD 技术可以进行这些测量,但耗时较长或效率较低。因此,天体物理学家必须要么增加信号即在世界上最大的望远镜上投入更多时间要么减少电子噪声。Skipper CCD 于 1990 年推出,旨在将电子噪声降低到可以测量单个光子的水平。为此,它们对感兴趣的像素进行多次测量,并跳过其余像素。这种策略使Skipper CCD 能够提高对图像感兴趣区域的测量精度,同时缩短总读出时间。2017 年,科学家们率先在SENSEI和OSCURA 等暗物质实验中使用了 skipper CCD,但最近的演示则是首次将该技术用于观测夜空和收集天文数据。3月31日和4月9日,研究人员利用SOAR积分场摄谱仪中的Skipper CCD收集了一个星系团、两颗遥远类星体、一个具有明亮发射线的星系和一颗可能与暗物质主导的超淡星系有关的恒星的天文光谱。在天体物理 CCD 观测中,他们首次实现了亚电子读出噪声,并对光学波长的单个光子进行了计数。Marrufo Villalpando 说:"令人难以置信的是,这些光子从数十亿光年外的天体传送到我们的探测器,而我们可以单独测量每一个光子。"研究人员正在分析这些首次观测的数据,SOAR 望远镜上的 skipper-CCD 仪器的下一次运行计划是在 2024 年 7 月。Skipper CCD 的发明者、加利福尼亚州研究机构 SRI International 的杰出工程师 Jim Janesick 说:"自 Skipper 诞生以来,几十年过去了,所以我很惊讶地看到这项技术再次焕发生机。"噪音结果令人惊叹!当我看到非常干净的亚电子噪声数据时,我从座位上站了起来。"随着用于天体物理学的鳍状 CCD 技术的首次成功演示,科学家们已经开始着手改进该技术。费米实验室和劳伦斯伯克利国家实验室开发的下一代鳍状 CCD 比目前的设备快 16 倍。这些新设备将大大缩短读出时间,研究人员已经开始在实验室对其进行测试。下一代Skipper CCD 已被确定用于未来的能源部宇宙学工作,如最近美国粒子物理学规划进程建议的光谱实验DESI-II 和 Spec-S5。此外,美国国家航空航天局(NASA)正在考虑为即将建立的宜居世界天文台(Habitable Worlds Observatory)配备跳线式 CCD,该天文台将试图探测类太阳恒星周围的类地行星。"我很期待看到这些探测器的最终用途,"2019 年加入该计划的 Marrufo Villalpando 说。"人们正在用它们做各种令人惊叹的事情;它们的用途从粒子物理学到宇宙学都有。这是一项用途广泛、非常有用的技术。"该项目由费米实验室、芝加哥大学、美国国家科学基金会 NOIRLab、美国能源部劳伦斯伯克利国家实验室和巴西国家天体物理实验室的物理学家、天文学家和工程师密切合作完成。编译自/scitechdaily ... PC版: 手机版:

封面图片

智利天文台绘制75%的天空地图 加强对银河系和宇宙学的了解

智利天文台绘制75%的天空地图 加强对银河系和宇宙学的了解 CLASS项目位于智利安第斯山脉,由约翰-霍普金斯大学领导,绘制了75%天空的详细地图,以探测宇宙的早期阶段。通过先进的微波偏振分析,该团队旨在澄清宇宙微波背景,加深对宇宙演化的理解,为未来的宇宙观测设定新标准。资料来源:约翰-霍普金斯大学由约翰-霍普金斯大学天体物理学家领导的美国国家科学基金会宇宙学大角度尺度测量仪(CLASS)合作绘制了这些地图。通过测量微波极化,或者说这些能量波如何向特定方向摆动,研究小组正在探索宇宙的历史和物理学从星系、恒星和行星形成的最初时刻开始。《天体物理学杂志》(The Astrophysical Journal)最近发表了新的天空地图和研究小组对这些地图的解读,硬件开发、观测和数据分析得到了美国国家科学基金会的支持。研究小组报告说,这些结果大大改进了科学家需要过滤掉银河系发出的微波(一种看不见的光)的观测工作。这些发现有望帮助科学家们更好地了解宇宙微波背景,即炙热、致密、年轻的宇宙在138亿年的生命周期中演化出的残余辐射。宇宙学家利用这一信号拼凑出早期宇宙的重要证据。"通过研究宇宙微波背景的极化,天体物理学家可以推断出宇宙早期的情况,"共同领导该研究小组的约翰-霍普金斯大学物理学和天文学教授托比亚斯-马里姆(Tobias Marriage)说。"天体物理学家可以追溯到非常非常早期的时代初始条件,宇宙中物质和能量分布最开始到位的时刻并且可以将所有这些与我们今天所看到的联系起来。"新的 CLASS 地图让我们进一步了解了一种叫做线性偏振的特殊信号,它来自于围绕银河磁场旋转的快速移动电子所产生的辐射。这种信号有助于科学家研究我们的银河系,但也会混淆他们对早期宇宙的看法。"这些发现极大地提高了我们对早期宇宙物理过程的认识,这些物理过程可能会产生一种独特形式的微波辐射圆偏振背景。在线性偏振方面,新成果增强了对银河信号的测量。"约翰霍普金斯大学物理和天文学吉尔曼学者查尔斯-贝内特(Charles L. Bennett)说:"它们显示出高度的一致性,并超过了以前太空任务的灵敏度。"与相应的卫星地图相比,新的 CLASS 偏振天空图噪音更小。偏振方向用红色和蓝色描绘,而偏振强度则通过颜色的深浅来捕捉。灰色部分描述的是 CLASS 望远镜因地理位置而无法观测到的天空部分。资料来源:约翰-霍普金斯大学地面观测的意义国家自然科学基金会天文科学部项目主任奈杰尔-夏普(Nigel Sharp)说:"研究宇宙诞生之初的残余辐射对于了解整个宇宙是如何形成的,以及为什么宇宙会变成现在这个样子至关重要。这些新的测量结果为我们日益增长的宇宙背景辐射变化提供了重要的大尺度细节这一壮举尤其令人印象深刻,因为它是利用地面仪器实现的。"这项研究为利用地面望远镜进行更详细的观测铺平了道路,与太空任务不同,地面望远镜可以不断改进仪器。CLASS天文台采用了新技术,包括引导太空辐射进入探测器的光滑壁馈线、定制设计的探测器和新型偏振调制器。所有这三项技术都是美国国家航空航天局和约翰霍普金斯大学合作开发的。第一作者、约翰-霍普金斯大学的天体物理学家约瑟夫-艾默(Joseph Eimer)说:"了解银河系的发射亮度非常重要,因为这是我们对宇宙微波背景进行更深入分析所必须校正的。CLASS在描述该信号的性质方面非常成功,因此我们可以识别它,并从观测中去除这些污染物。该项目是推动最大尺度地基偏振测量的前沿项目"。研究小组表示,这些结果为地面观测站在最大尺度上探测偏振设立了一个新的标准,为未来的研究提供了广阔的前景,特别是在纳入更多的 CLASS 数据(包括已经获得的数据和正在进行的观测数据)之后。CLASS 天文台位于智利北部海拔 16860 英尺的阿塔卡马天文公园内,由智利国家研究与发展机构(Agencia Nacional de Investigación y Desarrollo)负责管理。编译自:ScitechDaily ... PC版: 手机版:

封面图片

研究人员用更快的引力波探测技术揭示宇宙奥秘 反应时间仅需30秒

研究人员用更快的引力波探测技术揭示宇宙奥秘 反应时间仅需30秒 这项研究的目标是在探测到中子星和黑洞后 30 秒内向天文学家和天体物理学家发出警报,帮助人们更好地了解中子星和黑洞,以及包括金和铀在内的重元素是如何产生的。这些研究成果最近发表在《美国国家科学院院刊》(PNAS)上,这是一份经同行评审、开放获取的科学杂志。引力波与时空的相互作用是在一个方向上压缩时空,而在垂直方向上拉伸时空。这就是为什么目前最先进的引力波探测器是 L 型的,并使用干涉测量法测量激光的相对长度,干涉测量法是一种观察两个光源结合产生的干涉图案的测量方法。探测引力波需要精确测量激光的长度:相当于测量距离最近的恒星(约四光年)的距离,精确到一根头发丝的宽度。该图显示了研究人员发出警报所需的时间,平均不到 30 秒。图片来源:安德鲁-托伊沃宁这项研究是全球引力波干涉仪网络LIGO-Virgo-KAGRA(LVK) 协作的一部分。在最新的模拟活动中,使用了以前观测时段的数据,并添加了模拟引力波信号,以显示软件和设备升级的性能。该软件可以检测信号的形状,跟踪信号的表现,并估计事件中包括哪些质量,如中子星或黑洞。中子星是已知存在的最小、密度最大的恒星,是大质量恒星在超新星中爆炸时形成的。一旦该软件探测到引力波信号,它就会向用户(通常包括天文学家或天体物理学家)发送警报,告知信号在天空中的位置。随着这一观测时段的升级,科学家们能够在探测到引力波后更快地发送警报,时间不超过 30 秒。"有了这个软件,我们就能探测到中子星碰撞产生的引力波,这种引力波通常太微弱,除非我们知道确切的观测位置,否则是无法看到的,"明尼苏达大学双城分校物理与天文学院博士生安德鲁-托伊沃宁(Andrew Toivonen)说。"首先探测到引力波将有助于确定碰撞的位置,帮助天文学家和天体物理学家完成进一步的研究"。天文学家和天体物理学家可以利用这些信息来了解中子星的行为方式,研究中子星和黑洞碰撞时的核反应,以及包括金和铀在内的重元素是如何产生的。这是使用激光干涉仪引力波天文台(LIGO)进行的第四次观测,它将一直观测到 2025 年 2 月。在前三次观测期间,科学家们对信号的探测进行了改进。本次观测结束后,研究人员将继续查看数据并做出进一步改进,目标是更快地发出警报。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

盖亚卫星和GRAVITY观察到了明亮恒星附近潜伏的棕矮星

盖亚卫星和GRAVITY观察到了明亮恒星附近潜伏的棕矮星 一个研究小组发现了运行在明亮恒星附近的褐矮星,盖亚卫星和甚大望远镜的GRAVITY仪器使这一观测成为可能。这些发现揭示了与地球与太阳距离相近的褐矮星轨道,为了解褐矮星的形成和天体动力学提供了新的视角。图片来源:欧空局,编辑法国国家科学研究中心(CNRS)、格勒诺布尔阿尔卑斯大学(Université Grenoble Alpes)和巴黎-PSL 天文台(Observatoire de Paris-PSL)[1]的研究人员组成的科学家团队首次观测到了在明亮恒星附近运行的褐矮星,这是天文精确成像的一项创举。在拍摄到的 8 个伴星[2]中,研究人员确定其中 5 个是褐矮星。褐矮星是一种尚不十分清楚的亚恒星天体,既不是恒星也不是行星,而是介于恒星和行星之间的天体[3]。这项研究中发现的这些褐矮星绕恒星运行的距离相当于我们的行星与太阳之间的距离。如此短的距离让人们对褐矮星的形成产生了疑问。此外,观测到的某些通量比科学模型预测的要弱。这可能意味着其中一些褐矮星属于双星系统也就是说,它们本身可能被较小的伴星环绕。这些史无前例的观测是通过联合使用两台仪器实现的:盖亚卫星和位于智利 Cerro Paranal 的甚大望远镜干涉仪(VLTI)。盖亚的数据对数十万个多重系统进行了编目,并记录了它们的位置和运动情况,这使得科学家们能够确定八个天体,由 VLTI 的 GRAVITY 仪器进行有针对性的观测,该仪器就像一个放大镜。虽然 GRAVITY 能够以无与伦比的精度测量恒星天体最微小的特征,[4]但它必须瞄准精确的区域这正是盖娅的工作。在 GRAVITY 接收到盖亚识别出的八个伴星的光信号后,科学家们分析了它们的光度和质量,[5]从而得出五个是褐矮星的结论。在此之前,这种"隐藏的恒星伴星"一直没有被观测到。研究小组的研究成果将于6月20日发表在《天文学与天体物理学》(Astronomy & Astrophysics)杂志上。这些发现不仅对这些不寻常的天体褐矮星的形成,而且对大质量系外行星和太阳系行星的形成都提供了新的见解。说明以下法国研究单位参与了这项研究:天体物理空间研究和仪器实验室(巴黎-PSL 天文台/法国国家科学研究中心/索邦大学/巴黎城市大学)、格勒诺布尔平面和天体物理研究所(法国国家科学研究中心/格勒诺布尔阿尔卑斯大学)、马赛天体物理实验室(艾克斯-马赛大学/法国国家空间研究中心/法国国家科学研究中心),以及拉格朗日实验室(法国国家科学研究中心/蔚蓝海岸天文台/蔚蓝海岸大学)。伴星是围绕恒星运行的天体。产生能量并因此发光的能力是恒星有别于行星的一个特征。与行星不同,恒星的质量足以燃烧其核心的氢。另一方面,褐矮星的质量虽然不足以燃烧氢,但仍然比行星大得多:大约是木星的 30 倍,但比太阳系的恒星太阳小 30 倍。GRAVITY 使用一种称为干涉测量法的技术,通过这种技术,多个地面望远镜可以对准同一天体进行高分辨率观测,因此即使是非常小的低光度天体也能被观测到。光度和质量是了解天体如何随时间冷却的两个关键指标,因此可以追溯天体形成的历史。DOI: 10.1051/0004-6361/202450018 ... PC版: 手机版:

封面图片

中法合制天文卫星今发射

中法合制天文卫星今发射 由中国和法国联合研制的中法天文卫星(SVOM)将在星期六(6月22日)发射升空。 据法新社报道,这颗重达930公斤的卫星将载有两台法国仪器和两台中国仪器,并搭乘中国长征二号丙运载火箭从四川西昌卫星发射中心发射升空。 纽约熨斗研究所天体物理学中心的天体物理学家戈特利布(Ore Gottlieb)说:“SVOM有可能揭开(伽马射线暴)领域的几个谜团,包括探测到宇宙中最遥远的伽马射线暴,这相当于最早的伽马射线暴。” 伽马射线暴通常发生在比太阳大20多倍的巨大恒星爆炸之后。 报道称,迄今为止发现最遥远的伽玛射线暴发生在宇宙大爆炸之后的6.3亿年,相当于目前宇宙年龄的5%。 巴黎天体物理研究所的天体物理学家戴涅(Frederic Daigne)说:“我们对伽马射线暴本身很感兴趣,因为它们是非常极端的宇宙爆炸,能让我们更好地理解某些恒星的死亡。” 据报道,美国在2011年禁止NASA和北京之间的所有合作之后,中国和西方之间这种级别的太空合作相当罕见。 美国哈佛大学史密森天体物理中心的天文学家麦克道尔(Jonathan McDowell)说:“美国对技术转让的担忧抑制了美国盟友与中国的合作,但这种合作确实偶尔会发生。” 2018年,中国和法国联合发射了主要用于海洋气象的海洋卫星CFOSAT。此外,一些欧洲国家也参与了中国的嫦娥探月计划。 中国央视新闻今年1月从中国科学院微小卫星创新研究院获悉,中法天文卫星将在今年6月发射。报道称,该卫星的研制和环境试验工作当时已全部完成,中法两国专家已对该卫星将进行了出厂评审。卫星发射后,将开展探测宇宙中的伽马射线暴、研究宇宙演化和暗能量等工作。 2024年6月22日 12:05 PM

封面图片

天文学家解释了富勒烯的太空新源头

天文学家解释了富勒烯的太空新源头 富勒烯于 1985 年被发现并获得诺贝尔奖,它是一种稳定的碳分子,由于其在太空中的存在和运输复杂分子的潜力,可能有助于了解宇宙的有机物质组织。上图描述了行星状星云 M57 的中心,由天文摄影师罗伯特-根德勒博士和约翰-波兹曼拍摄。图片来源:NASA/ESA这些分子是 1985 年在实验室中发现的,11 年后,他们的三位发现者获得了诺贝尔化学奖。从那时起,许多观测证据都证明了它们在太空中的存在,特别是在像太阳一样大小的老恒星周围的气体云中,这些气体云被称为行星状星云,是恒星生命末期从外层排出的。由于这些分子高度稳定且难以破坏,人们认为富勒烯可以充当其他分子和原子的笼子,因此它们可能将复杂的分子带到地球,为生命的诞生提供了动力。因此,对它们的研究对于了解宇宙中有机物质组织的基本物理过程非常重要。光谱学对于搜索和识别太空中的富勒烯至关重要。通过分析原子和分子在光线中留下的化学足迹,光谱学使我们能够研究构成宇宙的物质。这些光谱显示了表明富勒烯存在的光谱线,但同时也显示了更宽的红外波段(UIR,英文缩写),这些波段在宇宙中被广泛探测到,从太阳系中的小天体到遥远的星系。领导这项研究的 IAC 研究员马尔科-戈麦斯-穆尼奥斯(Marco A. Gómez Muñoz)解释说:"导致这种广泛存在于宇宙中的红外辐射的化学物质的鉴定是一个天体化学之谜,尽管人们一直认为它很可能富含生命的基本元素之一碳。"为了识别这些神秘的波段,研究小组重现了行星状星云 Tc 1 的红外辐射。对发射波段的分析表明,其中存在无定形氢化碳(HAC)颗粒。这些处于高度无序状态的碳和氢的化合物在垂死恒星的包层中非常丰富,可以解释这个星云的红外辐射。"我们首次将从实验室实验中获得的HAC光学常数与光离子化模型结合起来,从而再现了富勒烯含量非常丰富的行星状星云Tc 1的红外辐射",论文共同作者之一、IAC研究员Domingo Anibal García Hernández解释说。对于研究小组来说,HAC 和富勒烯同一物体的出现支持了这样一种理论,即富勒烯可能是在尘粒被破坏的过程中形成的,例如与紫外线辐射的相互作用,而紫外线辐射的能量要比可见光高得多。有了这项成果,科学家们为未来基于实验室化学和天体物理学合作的研究开辟了道路。戈麦斯-穆尼奥斯总结说:"我们的工作清楚地表明,跨学科科学和技术在推动天体物理学和天体化学的基本进步方面具有巨大潜力。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人