麻省理工学院研究人员开发出对图像质量影响最小的超快速图像生成方法

麻省理工学院研究人员开发出对图像质量影响最小的超快速图像生成方法 图像生成人工智能通常采用一种称为扩散的过程,通过几个采样步骤来完善视觉输出,以达到最终希望"逼真"的结果。研究人员表示,扩散模型可以生成高质量的图像,但需要数十次前向传递。Adobe 研究中心和麻省理工学院的专家们正在引入一种名为"分布匹配蒸馏"(DMD)的技术。这一程序将多步扩散模型简化为一步图像生成解决方案。由此产生的模型可以生成与Stable Diffusion 1.5 等"传统"扩散模型相当的图像,但速度要快上几个数量级。"我们的核心理念是训练两个扩散模型,不仅能估计目标真实分布的得分函数,还能估计假分布的得分函数。"研究人员称,他们的模型可以在现代 GPU 硬件上每秒生成 20 幅图像。上面的视频短片重点介绍了 DMD 与 Stable Diffusion 1.5 相比的图像生成能力。标清每幅图像需要 1.4 秒,而 DMD 只需几分之一秒就能生成类似的图像。虽然在质量和性能之间有所权衡,但最终结果仍在普通用户可接受的范围之内。该团队发表的关于新渲染方法的文章展示了使用 DMD 生成图像结果的更多示例。它比较了稳定扩散和 DMD,同时提供了生成图像的重要文字提示。主题包括通过虚拟数码单反相机镜头取景的一只狗、多洛米蒂山脉、森林中一只神奇的鹿、一只鹦鹉宝宝的 3D 渲染、独角兽、胡须、汽车、猫,甚至更多的狗。分布匹配蒸馏法并不是第一种用于生成人工智能图像的单步方法。Stability AI 公司开发了一种被称为逆向扩散蒸馏(ADD)的技术,用于实时生成 100 万像素的图像。该公司通过 ADD 训练其 SDXL Turbo 模型,在单个 NVIDIA A100 AI GPU 加速器上实现了仅 207 毫秒的图像生成速度。Stability 的 ADD 采用了与麻省理工学院的 DMD 类似的方法。 ... PC版: 手机版:

相关推荐

封面图片

《麻省理工学院公开课:供应链管理》

《麻省理工学院公开课:供应链管理》 简介:本书系统解析麻省理工学院公开课:供应链管理的核心内容,并结合实用案例帮助读者加深理解。内容涵盖其发展历程、关键概念及实际应用,提供深入的知识探索路径。适合对该主题有兴趣的学习者,帮助拓宽视野并提高专业素养。 标签: #麻 #麻省理工 #知识 #学习 文件大小:NG 链接:https://pan.quark.cn/s/f67d29b69fd8

封面图片

麻省理工学院本来定下今天2:30清场,结果来了200名高中生,突破围栏,进入营地,手拉手保护营地,警察就没动手。麻省理工学院示威

麻省理工学院本来定下今天2:30清场,结果来了200名高中生,突破围栏,进入营地,手拉手保护营地,警察就没动手。麻省理工学院示威学生的诉求是要求学校不要与以色列军方合作研发武器,某些犹太学生声称这是反犹主义,让他们感到不安全了。

封面图片

MIT麻省理工学院关于深度学习方法的入门课程 || #机器学习

MIT麻省理工学院关于深度学习方法的入门课程 || #机器学习 麻省理工学院深度学习方法入门课程,可应用于计算机视觉、自然语言处理、生物学等领域! 学生将获得深度学习算法的基础知识,并获得在 TensorFlow 中构建神经网络的实践经验。 先修课程需要微积分(即求导数)和线性代数(即矩阵乘法),有 Python 经验者将有所帮助,但并非必要。

封面图片

麻省理工学院揭幕"质子之舞": 开拓能源新时代

麻省理工学院揭幕"质子之舞": 开拓能源新时代 麻省理工学院的化学家们首次详细描绘了这些质子耦合电子转移是如何在电极表面发生的。他们的研究成果可以帮助研究人员设计出更高效的燃料电池、电池或其他能源技术。麻省理工学院化学和化学工程教授、该研究的资深作者 Yogesh Surendranath 说:"我们在这篇论文中取得的进展是研究和理解了这些电子和质子如何在表面部位耦合的性质,这与催化反应有关,而催化反应在能量转换装置或催化反应中非常重要。"在他们的研究成果中,研究人员能够准确追踪电极周围电解质溶液 pH 值的变化如何影响电极内质子运动和电子流动的速度。麻省理工学院研究生诺亚-刘易斯(Noah Lewis)是这篇论文的第一作者,论文最近发表在《自然-化学》上。麻省理工学院前博士后 Ryan Bisbey、麻省理工学院研究生 Karl Westendorff 和耶鲁大学研究科学家 Alexander Soudackov 也是这篇论文的作者。质子传递质子耦合电子转移是指一种分子(通常是水或酸)将质子转移到另一种分子或电极表面,从而刺激质子接受者也接受一个电子。这种反应已被广泛应用于能源领域。"这些质子耦合电子转移反应无处不在。它们通常是催化机制中的关键步骤,对于制氢或燃料电池催化等能量转换过程尤为重要,"Surendranath 说。在制氢电解槽中,这种方法用于从水中去除质子,并在质子上添加电子以形成氢气。在燃料电池中,当质子和电子从氢气中移出并加入氧气形成水时,就会产生电能。施加电势会导致质子从氢离子(右图)转移到电极表面。利用具有分子定义质子结合位点的电极,麻省理工学院的研究人员为这些界面质子耦合电子转移反应建立了一个通用模型。图片来源:研究人员提供质子耦合电子转移在许多其他类型的化学反应中都很常见,例如二氧化碳还原(通过添加电子和质子将二氧化碳转化为化学燃料)。当质子接受体是分子时,科学家们可以精确控制每个分子的结构,并观察电子和质子如何在分子间传递,因此他们已经对这些反应的发生过程有了很多了解。然而,当质子耦合电子转移发生在电极表面时,这一过程就更难研究了,因为电极表面通常非常异质,质子有可能与许多不同的位点结合。为了克服这一障碍,麻省理工学院的研究小组开发出一种设计电极表面的方法,使他们能够更精确地控制电极表面的组成。他们的电极由石墨烯薄片组成,表面附着有机含环化合物。每个有机分子的末端都有一个带负电荷的氧离子,它可以接受周围溶液中的质子,从而使电子从电路流入石墨表面。Surendranath 说:"我们可以创造出一种电极,它不是由各种各样的位点组成,而是由单一类型的非常明确的位点组成的统一阵列,每个位点都能以相同的亲和力结合质子。由于我们拥有这些非常明确的位点,这让我们能够真正揭示这些过程的动力学"。利用这个系统,研究人员能够测量流向电极的电流,从而计算出平衡状态下质子向表面氧离子转移的速率质子向表面捐赠的速率和质子从表面转移回溶液的速率相等的状态。他们发现,周围溶液的 pH 值对这一速率有显著影响: 最高速率出现在 pH 值的两端酸性最强的 pH 值为 0,碱性最强的 pH 值为 14。为了解释这些结果,研究人员根据电极可能发生的两种反应建立了一个模型。在第一种反应中,强酸性溶液中高浓度的氢离子(H3O+)将质子传递给表面的氧离子,生成水。在第二种情况下,水将质子传递给表面氧离子,生成氢氧根离子(OH-),氢氧根离子在强碱性溶液中浓度较高。不过,pH 值为 0 时的速度比 pH 值为 14 时的速度快四倍,部分原因是氢离子释放质子的速度比水快。需要重新考虑的反应研究人员还惊奇地发现,这两个反应的速率并不是在中性 pH 值为 7(氢铵和氢氧根的浓度相等)时相等,而是在 pH 值为 10(氢氧根离子的浓度是氢铵的 100 万倍)时相等。该模型表明,这是因为涉及氢𬭩或水提供质子的前向反应比涉及水或氢氧化物去除质子的后向反应对总速率的贡献更大。研究人员说,关于这些反应如何在电极表面发生的现有模型假定,前向反应和后向反应对总速率的贡献相同,因此新发现表明,可能需要重新考虑这些模型。Surendranath说:"这是默认的假设,即正向和逆向反应对反应速率的贡献相同。我们的发现确实令人大开眼界,因为这意味着人们用来分析从燃料电池催化到氢进化等一切问题的假设可能是我们需要重新审视的。"研究人员目前正在利用他们的实验装置研究向电极周围的电解质溶液中添加不同类型的离子会如何加快或减慢质子耦合电子流的速度。刘易斯说:"通过我们的系统,我们知道我们的位点是恒定的,不会相互影响,因此我们可以读出溶液的变化对表面反应的影响。"编译自//scitechdaily ... PC版: 手机版:

封面图片

麻省理工学院研究人员利用压电纤维开发出主动降噪织物

麻省理工学院研究人员利用压电纤维开发出主动降噪织物 这项发表在《先进材料》(Advanced Materials)杂志上的研究,是在早先研究的基础上,创造出一种可以充当麦克风并放大声音的丝绸织物。在研究过程中,研究小组意识到他们的材料还可以用来过滤声音。他们将后一个想法付诸实践。这种由压电纤维制成的特制织物几乎不比头发丝粗。当施加电压时,这种材料就会振动,如果调整得当,就能像降噪耳机一样抵消传入的声音。这种方法在狭小的空间内很有用,但在室内却不奏效。为了应对这一挑战,他们需要一种不同的方法。研究人员发现,通过使用电压使织物完全静止,可以使其变成一种声屏障,像镜子一样将声音反射回声源。在测试中,直接抑制模式(类似于降噪耳机)能够将音量降低 65 分贝。在"静止"模式下,声音传播降低了 75%。虽然前景广阔,但在考虑商业推广之前,仍有许多工作要做。该团队需要进行更多的测试,以了解纤维数量、缝合方向和电源电压等变量的变化对性能的影响。第一作者格蕾丝-杨(Grace Yang)说,这仅仅是个开始,要让这项技术真正有效,"我们还有很多旋钮可以转动"。他们还需要找出将其推向市场的最佳方法。这项研究的共同作者、麻省理工学院教授尤尔-芬克(Yoel Fink)告表示,这种材料现在还太新,他甚至不知道它的市场在哪里。 ... PC版: 手机版:

封面图片

麻省理工学院研究人员展示快速打印金属的新方法

麻省理工学院研究人员展示快速打印金属的新方法 麻省理工学院的一个团队本周公布了一种新方法,该方法优先考虑打印速度和规模(物体大小),而不是分辨率。据介绍,该系统打印大型铝制部件的速度"比同类金属快速成型制造工艺至少快 10 倍。液态金属打印(LMP)利用 100 微米的玻璃珠形成一个结构,将熔化的铝沉积其中,这一过程与注塑成型并无二致。玻璃珠能够承受高温,同时在金属凝固时迅速散热。鉴于铝被归类为"无限可回收"的材料,这项工作背后的团队设想将这一系统与将金属熔化成熔体的机器配对使用。这样的组合对于建筑工地来说可能是无价之宝,能以更低的成本实现更快的速度和更大的物体。不过,至少有一个很大的注意事项:分辨率。从图片中可以看出,最终产品的精确度远不及其他一些方法。制作出的金属物体凹凸不平,与逐层挤出塑料的熔融沉积建模(FDM)产品十分相似。当然,也可以对铝材进行打磨,但这很可能需要额外的时间和金钱,大多数人都不愿意在加工过程中引入这种工艺。"液态金属印刷在生产定制几何形状金属零件的能力方面确实走在了前列,同时还能保持快速周转,这在其他印刷或成型技术中通常是无法实现的,这项技术绝对有潜力彻底改变目前处理金属印刷和金属成型的方式。"Emeco 公司的 Jaye Buchbinder 说,该公司是一家家具公司,为这项研究提供了资金支持。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人