科学家在中国桂皮中发现潜在的脱发治疗方法

科学家在中国桂皮中发现潜在的脱发治疗方法 他们之前发现,所谓的"爱的荷尔蒙"催产素通过上调真皮乳头细胞中的基因促进毛发生长,而这些基因在毛发的形成、生长和循环中起着关键作用。然而,通过皮肤注射催产素以激活毛发生长途径的一个问题是,催产素是一种相对较大的分子,因此无法被吸收。肉桂,更确切地说,是来自中国肉桂(桂皮)的肉桂酸。众所周知,肉桂具有广泛的保健功效,包括皮肤抗衰老作用,最近还发现肉桂酸通过对催产素受体的作用增强皮肤弹性。肉桂酸被广泛用于化妆品中,其分子量仅为催产素的一小部分。研究人员评估了肉桂酸对催产素和毛发生长相关基因表达的影响。用不同浓度的肉桂酸(0 至 2,000 微克/毫升)培养真皮乳头细胞。观察发现,1000 和 2000 微克/毫升的浓度会造成细胞损伤,超过 500 微克/毫升的浓度会严重抑制细胞增殖。不过,在浓度低于 500 微克/毫升时,可以观察到催产素和与毛发生长有关的基因的表达呈剂量依赖性增加。用肉桂酸处理毛囊器官组织可增加其"萌芽"长度,这表明肉桂酸处理可促进头发生长研究人员研制出了一种可以再生毛发的人体毛囊类器官("毛囊球")。使用类器官(本质上是一个微型器官)使研究人员能够同时将不同的细胞暴露于肉桂酸处理中,从而提供更大、更可靠的数据。他们在毛囊体上测试了 0、50、100 和 500 µg/mL 的浓度,持续时间长达 10 天。结果显示,肉桂酸浓度为 100 微克/毫升和 500 微克/毫升时,头发发芽长度在第八天时有显著增加,这表明最佳浓度就在这一范围内。催产素对毛发生长的影响增加了 1.3 倍,而肉桂酸对毛发生长的影响增加了 1.25 倍。"肉桂酸是一种具有促进头发生长特性的特殊成分,它的鉴定为提高生发产品的功效带来了巨大希望,"该研究的第一作者、云南师范大学工程学院副教授Tatsuto Kageyama说。"此外,对催产素信号介导的生发促进作用机理的新认识将为护发科学提供新的见解,并有助于在药物发现领域加速寻找以催产素受体表达为靶点的新药"。不过,大量购买食用中国肉桂没有任何好处。进一步的研究将侧重于脱发小鼠的实验,以确定通过皮肤施用肉桂酸的效果、所需剂量以及是否会产生任何副作用。不过,如果您想自己在家进行检测,柑橘类水果、葡萄、可可、菠菜、芹菜和黄铜类蔬菜(包括西兰花、球芽甘蓝、卷心菜、花椰菜、羽衣甘蓝、羽衣甘蓝和萝卜)中也含有肉桂酸。这项研究发表在《科学报告》杂志上。 ... PC版: 手机版:

相关推荐

封面图片

科学家发现利用营养物质有效治疗癌症的新方法

科学家发现利用营养物质有效治疗癌症的新方法 一个国际研究小组开发出一种治疗癌症的新方法,利用营养物质重新激活癌细胞中休眠的代谢途径。研究小组利用一种广泛存在的氨基酸酪氨酸,以纳米药物的形式输送,改变了黑色素瘤(一种严重的皮肤癌)的新陈代谢,从而抑制了癌症的生长。澳大利亚是世界上皮肤癌发病率最高的国家。这种新方法可以与现有疗法相结合,更好地治疗黑色素瘤。这项技术还有可能治疗其他类型的癌症。这项研究由复旦大学的卜文波教授和悉尼科技大学的金大勇教授领导,最近发表在著名期刊《自然纳米技术》(NatureNanotechnology)上。酪氨酸在生物体内的生物利用率有限。然而,研究人员利用一种新的纳米技术,将酪氨酸包装成被称为纳米微粒的微小颗粒,这种微粒会被癌细胞膜吸引,并很容易分解,从而促进吸收。研究小组随后在小鼠和实验室中的人源黑色素瘤细胞中测试了这种创新疗法,发现酪氨酸纳米微粒重新激活了休眠代谢途径,引发了黑色素合成,抑制了肿瘤生长。"不受控制的快速生长是癌细胞区别于正常细胞的一个关键特征。在癌细胞中,一些新陈代谢途径被过度激活,而另一些则被抑制,从而为快速扩散创造了必要的环境,"金教授说。"虽然此前已开发出一些基于代谢的癌症药物,如阻碍乳腺癌中雌激素合成的芳香化酶抑制剂和针对各种癌症中糖酵解的HK2抑制剂,但这些药物都是通过抑制过度激活代谢途径来发挥作用的。""我们的研究首次表明,通过重新激活处于休眠状态的新陈代谢途径,可以阻止癌症的发生。而这可以通过使用简单的营养物质来实现,如氨基酸、糖和维生素,它们安全、易得、耐受性好,"卜教授说。不同类型的癌症会对不同的营养物质做出反应。黑色素瘤细胞是从产生黑色素的皮肤细胞黑色素细胞发展而来的。黑色素的生成需要酪氨酸,酪氨酸能刺激黑色素的生成,因此对黑色素瘤有效。黑色素合成的重新激活迫使黑色素瘤细胞减少糖酵解(将糖转化为能量的过程),这被认为是其抗癌作用的机制。黑色素瘤细胞也容易受到热应力的影响。研究人员发现,通过将酪氨酸纳米簇治疗与近红外激光治疗相结合,他们能够在六天后根除小鼠体内的黑色素瘤,而且在研究期间黑色素瘤不会再次发生。研究结果表明,利用纳米药物治疗癌症有望开辟一个新领域。编译自/ScitechDaily ... PC版: 手机版:

封面图片

微针贴片的魔法:可逆转脱发的新型脱发治疗方法

微针贴片的魔法:可逆转脱发的新型脱发治疗方法 访问:Saily - 使用eSIM实现手机全球数据漫游 安全可靠 源自NordVPN 对于大多数脱发患者来说,目前还没有有效的治疗方法。研究小组开发了一种微针贴片,可以无痛地贴在头皮上,并释放药物,帮助重新平衡该部位的免疫反应,阻止自身免疫攻击。在对小鼠的研究中,研究人员发现,这种治疗方法能让毛发重新生长,并显著减轻治疗部位的炎症,同时避免对身体其他部位造成系统性免疫影响。研究人员说,这种策略也可用于治疗其他自身免疫性皮肤病,如白癜风、特应性皮炎和银屑病。研究人员开发出了一种潜在的治疗斑秃(一种导致脱发的自身免疫性疾病)的新方法。这种新型微针贴片能传递免疫调节分子,使 T 细胞不再攻击毛囊,从而帮助头发再生。图为微针近景。图片来源:研究人员提供这种创新方法标志着模式的转变。麻省理工学院医学工程与科学研究所首席研究科学家、哈佛大学医学院和布里格姆妇女医院医学副教授、哈佛大学维斯研究所副教员娜塔莉-阿特兹(Natalie Artzi)说:"我们现在的重点不是抑制免疫系统,而是在抗原接触部位精确调节免疫系统,以产生免疫耐受。"Artzi和哈佛医学院及布里格姆妇女医院医学副教授Jamil R. Azzi是这项发表在《先进材料》杂志上的新研究的资深作者。布里格姆妇女医院博士后 Nour Younis 和布里格姆妇女医院博士后、麻省理工学院前研究人员 Nuria Puigmal 是论文的主要作者。在最近获得哈佛商学院布拉瓦特尼克奖学金的普伊格马尔的领导下,研究人员目前正着手成立一家公司,进一步开发这项技术。当人体自身的 T 细胞攻击毛囊,导致头发脱落时,就会出现斑秃,影响着 600 多万美国人。大多数患者唯一可用的治疗方法是向头皮注射免疫抑制剂类固醇,但这种治疗方法非常痛苦,患者往往无法忍受。一些斑秃和其他自身免疫性皮肤病患者也可以口服免疫抑制剂来治疗,但这些药物会导致免疫系统受到广泛抑制,从而产生不良副作用。"这种方法使整个免疫系统陷入沉默,虽然缓解了炎症症状,但却导致炎症频繁复发。此外,它还增加了感染、心血管疾病和癌症的易感性,"Artzi 说。这项研究中使用的微针贴片由透明质酸与聚乙二醇(PEG)交联制成,这两种物质都具有生物相容性,常用于医疗领域。研究人员设计微针贴片的目的是在释放药物载荷后,还能收集样本,用于监测治疗进展。图为微针的另一个显微镜视图。图片来源:研究人员提供几年前,在华盛顿举行的一次工作组会议上,阿特兹碰巧坐在阿齐旁边(座位按字母顺序排列),阿齐是一位免疫学家和移植物理学家,他正在寻找直接向皮肤输送药物的新方法,以治疗与皮肤有关的疾病。他们的谈话促成了一项新的合作,两个实验室联手研究一种向皮肤输送药物的微针贴片。2021年,他们报告说,这种贴片可用于预防皮肤移植后的排斥反应。在新的研究中,他们开始将这种方法应用于自身免疫性皮肤病。"皮肤是我们身体中唯一可以看到和触摸到的器官,然而当涉及到向皮肤给药时,我们又回到了全身给药的方式。我们看到了利用微针贴片对免疫系统进行局部重编程的巨大潜力,"阿齐说。这项研究中使用的微针贴片由透明质酸与聚乙二醇(PEG)交联制成,这两种物质都具有生物相容性,常用于医疗领域。使用这种给药方法,药物可以穿过坚韧的表皮外层,而涂抹在皮肤上的药膏无法穿透表皮。"这种聚合物配方使我们能够制造出高度耐用的针头,并能有效穿透皮肤。此外,它还能让我们灵活地加入任何需要的药物,"阿齐说。在这项研究中,研究人员在贴片中加入了细胞因子 IL-2 和 CCL-22 的组合。这些免疫分子有助于招募调节性 T 细胞,使其增殖并帮助抑制炎症。这些细胞还能帮助免疫系统学会识别毛囊不是外来抗原,从而停止攻击毛囊。研究人员发现,小鼠每隔一天使用这种贴片治疗三周后,患处的调节性 T 细胞数量增加了许多,炎症也有所减轻。这些部位的毛发得以重新生长,而且这种生长在治疗结束后还能维持数周。在这些小鼠中,脾脏或淋巴结中的调节性 T 细胞水平没有发生变化,这表明治疗只对贴片的部位产生影响。在另一组实验中,研究人员将人类皮肤移植到具有人源化免疫系统的小鼠身上。在这些小鼠身上,微针治疗也诱导了调节性 T 细胞的增殖并减少了炎症。研究人员设计的微针贴片在释放药物载荷后,还能收集样本,用于监测治疗进展。透明质酸会使微针在进入皮肤后膨胀约十倍,从而使它们能够吸收皮肤中含有生物分子和免疫细胞的间隙液。去除贴片后,研究人员可以对样本进行分析,以测量调节性 T 细胞和炎症标志物的水平。这对于监测未来可能接受这种治疗的患者很有价值。研究人员现在计划进一步开发这种治疗脱发的方法,并将其扩展到其他自身免疫性皮肤病。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新研究将角蛋白微球作为一种安全有效的生发疗法的潜在应用

新研究将角蛋白微球作为一种安全有效的生发疗法的潜在应用 我们自身也会产生这种蛋白质,其作用是一样的,即保持头发、皮肤和指甲的健康和强壮。鉴于角蛋白的生物相容性,人们已经探索将其作为抗癌、抗菌和伤口愈合药物的载体。皮肤的表层(表皮)是渗透的屏障,这既是好事也是坏事。表皮层是抵御病原体和化学物质的屏障,同时也能阻止治疗药物进入。而毛囊则是进入皮肤深层的潜在途径。在一项新研究中,日本筑波大学的研究人员创造了一种由水溶性角蛋白小球组成的凝胶,这种凝胶可以穿透毛囊让小鼠重新长出头发。皮肤解剖毛囊基部有负责调节毛发生长的真皮乳头细胞微球是一种从有机或无机来源提取的纳米球形颗粒,已显示出通过毛囊向皮肤输送治疗药物的潜力。在目前的研究中,研究人员合成了水溶性角蛋白三维微球。与水接触后,微球膨胀,形成凝胶。七周大的雄性小鼠用脱毛膏拔掉了背部的一部分毛发。它们被分成几组,分别接受米诺地尔(一种用于治疗模式性脱发的药物)、角蛋白、微球角蛋白或水的治疗,在无毛部位局部涂抹20天。每天对小鼠进行监测,并在第 0 天、第 10 天和第 20 天拍摄照片。收集所有组中经过处理的皮肤,以分析其基因表达。在角蛋白微球处理组中,毛发在处理后第二天开始重新生长,随后生长速度加快。这种效果与米诺地尔治疗小鼠的效果相似。角蛋白处理组的毛发再生不如角蛋白微球处理组明显。分析表明,角蛋白微球组中上调的基因主要与调节毛囊发育等皮肤功能有关。参与应激反应、组织发育和维持皮肤稳定的基因的表达也有所增加。角蛋白微球处理触发了干细胞相关基因,激活了毛发生长途径和毛囊发育。与对照组相比,角蛋白微球还能明显减少促炎标记物的表达。综合考虑这些因素,角蛋白微球疗法在促进毛囊生长阶段的同时,还具有抗炎活性。所有治疗组的小鼠 图/贝贾维等人随后,研究人员在调节毛囊生长的人类毛囊细胞真皮乳头细胞上对微球进行了测试。结果表明,微球可被表皮吸收,到达真皮乳头细胞,激活这些细胞及其相关的毛发生长标记。研究发现,微球对细胞无毒。"研究人员说:"我们观察到,微球治疗成功穿透表皮各层,到达真皮乳头,并显著激活了与毛发生长相关的标记物。"这些研究结果表明,微球角蛋白能刺激毛发生长过程,并进一步增强皮肤各层之间的相互作用"。研究人员说,他们的角蛋白微球有可能推动药物输送方法的发展,应用于皮肤和毛发相关的研究和疾病。进一步的研究将探索微球角蛋白作为靶向给药和载体系统治疗毛囊相关疾病的具体方法。这项研究发表在《ACS 应用生物材料》杂志上。 ... PC版: 手机版:

封面图片

科学家实现利用脂肪组织进行3D生物打印

科学家实现利用脂肪组织进行3D生物打印 一种使用脂肪组织的新型 3D 生物打印方法可以打印分层的活体皮肤和毛囊,有望改善重建手术和毛发生长治疗的效果。 这项专利技术在老鼠身上进行了成功的测试,可以彻底改变治疗皮肤损伤和增强美容手术的方法。该团队的研究结果发表在《生物活性材料》上。 美国专利商标局于二月份授予该团队一项在本研究中开发和使用的生物打印技术的专利。宾夕法尼亚州立大学工程科学与力学、生物医学工程和神经外科教授易卜拉欣·T·奥兹博拉特 (Ibrahim T. Ozbolat) 表示:“用于纠正因受伤或疾病而造成的面部或头部创伤的重建手术通常并不完美,会导致疤痕或永久性脱发。通过这项工作,我们证明了生物打印的全层皮肤具有在老鼠身上生长毛发的潜力。 这距离实现更自然、更美观的人类头部和面部重建又近了一步。”他领导了开展这项工作的国际合作。虽然科学家之前已经对薄层皮肤进行了 3D 生物打印,但 Ozbolat 和他的团队是第一个在术中打印多个皮肤层(包括最底层或皮下组织)的完整生命系统的。 研究人员表示,术中指的是在手术期间打印组织的能力,这意味着该方法可用于更立即、无缝地修复受损皮肤。 顶层作为可见皮肤的表皮在中间层的支撑下自行形成,因此不需要打印。 皮下组织由结缔组织和脂肪组成,为头骨提供结构和支撑。宾夕法尼亚州立大学博士后研究员 Miji Yeo 检查 3D 打印机上的生物墨盒,该打印机专为术中打印皮肤层而开发。 图片来源:米歇尔·比克斯比/宾夕法尼亚州立大学“皮下组织直接参与干细胞变成脂肪的过程,”奥兹博拉特说。 “这个过程对于包括伤口愈合在内的几个重要过程至关重要。 它还在毛囊循环中发挥作用,特别是促进头发生长。”皮肤生物打印的突破研究人员首先从宾夕法尼亚州立大学健康米尔顿·赫尔希医疗中心接受手术的患者身上获取人体脂肪或脂肪组织。 合作者迪诺·J·拉夫尼克 (Dino J. Ravnic) 是宾夕法尼亚州立大学医学院整形外科系的外科副教授,他带领他的实验室获得了用于提取细胞外基质的脂肪细胞外基质是分子和蛋白质的网络,为细胞提供结构和稳定性。 组织制造生物墨水的一种成分。Ravnic 的团队还从脂肪组织中获得了干细胞,如果提供正确的环境,干细胞有可能成熟为几种不同的细胞类型,从而制造另一种生物墨水成分。 每个组件都被加载到生物打印机的三个隔室之一中。 第三个隔室充满了凝血溶液,有助于其他成分正确地结合到受伤部位。“这三个隔室使我们能够在精确控制下共同打印基质-纤维蛋白原混合物和干细胞,”Ozbolat 说。 “我们直接打印到损伤部位,目标是形成皮下组织,这有助于伤口愈合、毛囊生成、温度调节等。”他们获得了皮下组织和真皮层,表皮在两周内自行形成。“我们在大鼠身上进行了三组研究,以更好地了解脂肪基质的作用,我们发现基质和干细胞的共同传递对于皮下组织的形成至关重要,”Ozbolat 说。 “它不能仅对细胞或基质有效地起作用它必须同时起作用。”他们还发现皮下组织含有向下生长,这是早期毛囊形成的初始阶段。 研究人员表示,虽然脂肪细胞不直接参与毛囊的细胞结构,但它们参与毛囊的调节和维护。“在我们的实验中,脂肪细胞可能改变了细胞外基质,以更有利于向下生长的形成,”奥兹博拉特说。 “我们正在努力推进这一目标,以控制密度、方向性和生长的方式使毛囊成熟。”奥兹博拉特表示,在创伤的受伤或患病部位精确生长毛发的能力可能会限制自然重建手术的表现。 他说这项工作提供了一条“充满希望的前进道路”,特别是与他实验室的其他项目相结合,包括打印骨骼和研究如何匹配各种肤色的色素沉着。“我们相信这可以应用于皮肤科、毛发移植以及整形和重建手术它可能会带来更加美观的结果,”奥兹博拉特说。“凭借全自动生物打印能力和临床级兼容材料,这项技术可能会对精确重建皮肤的临床转化产生重大影响。”编译自:ScitechDaily ... PC版: 手机版:

封面图片

邓迪大学科学家发现阻止活跃癌细胞的方法

邓迪大学科学家发现阻止活跃癌细胞的方法 邓迪大学药物发现部门(DDU)与伦敦玛丽女王大学的一个合作研究项目发现了一种被称为工具分子的化学物质,它可以阻止活跃的癌细胞。通过合作推进癌症治疗使用这些工具分子可以迫使一种特定类型乳腺癌的肿瘤细胞进入促衰老状态类似于睡眠状态,在这种状态下,它们不再分裂或导致肿瘤生长。这种情况会使癌细胞对第二类工具分子(称为"衰老分解药物")产生敏感性,从而消灭癌细胞。它还可以"释放"癌细胞,让人体的免疫系统看到它们,从而提供更多的治疗机会。研究人员在研究基底样乳腺癌(BLBC)时开发出了这种"双拳"方法。癌症新疗法的潜力由巴兹慈善机构资助、伦敦玛丽女王大学衰老学教授兼表型筛选设施学术带头人 Cleo Bishop 领导的研究小组发现了一种迫使 BLBC 细胞进入促衰老状态的途径。随后,他们与邓迪大学药物发现组(DDU)的另一个团队合作,开发出了促进细胞衰老的工具分子。邓迪大学药物发现小组成员。资料来源:邓迪大学目前,其他地方正在开发药物疗法,以打出消灭细胞的"第二拳"。毕晓普教授说:"目前,治疗蓝细胞白血病最常见的方法是手术和不成熟的化疗方案。因此,由于缺乏量身定制疗法的可能靶点,而且临床过程具有侵袭性,这意味着患有 BLBC 的女性预后特别差。促衰老疗法能激活稳定的细胞周期停滞,阻止肿瘤生长,引发抗肿瘤免疫反应,并使癌症接受称为衰老素的新型治疗方案"。这项研究利用高内涵成像技术从 DDU 的多样性库中识别出工具分子,制药公司 ValiRx 现已选定这些分子进行进一步评估。本月,邓迪大学与该公司签署了一项为期五年的协议。根据该协议,"第一拳"工具分子将率先进入为期 12 个月的评估阶段,如果评估成功,三方将合资成立一家新公司。邓迪大学药物发现部业务发展主管夏洛特-格林(Charlotte Green)说:"近年来,一举两得的方法受到了广泛关注,但目前还没有临床先例,通过与 ValiRx 公司合作推进该项目,我们将引领研究成果向临床转化的方向。"ValiRx 首席执行官 Suzy Dilly 博士说:"邓迪大学和研究设施的实力令人印象深刻,在过去一年中,我们审查了来自邓迪大学团队的多个项目,我们相信,这份评估协议将成为一系列新项目中的第一个,可以纳入我们的管道。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

中国科学家在癌症精准治疗上获新突破

中国科学家在癌症精准治疗上获新突破 据统计,超过半数的人类肿瘤中发现了p53突变基因,突变后的p53蛋白不仅丧失了原有的抑癌能力,还异常聚集在细胞内,致使肿瘤发生、侵袭、转移以及化疗耐药等。研究人员通过NanoTAC技术形成仿生模拟人体天然降解系统的选择性自噬关键受体蛋白。该仿生纳米受体成功实现对肿瘤细胞中突变p53的自噬性降解,并在多种肿瘤细胞和卵巢癌患者来源的肿瘤动物模型中均展现出了显著治疗效果。NanoTAC技术作为一种全新的仿生纳米平台,不仅能够实现药物递送,还能够通过诱导自噬靶向降解致病蛋白,为解决癌症等重大疾病的精准治疗难题提供了新思路新方向。 ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人