研究人员从原子层面了解二维半导体界面上的电荷转移过程

研究人员从原子层面了解二维半导体界面上的电荷转移过程 超短闪光打破了电子(红色)和空穴(蓝色)之间的结合,从而实现了对原子薄半导体中电荷转移过程的研究。资料来源:Lukas Kroll、Jan Philipp Bange、Marcel Reutzel、Stefan Mathias:《科学进展》,DOI: 10.1126/sciadv.adi1323通过使用一种特殊的方法破坏电子和空穴之间的结合,他们得以从微观上深入了解半导体界面上的电荷转移过程。相关成果发表在《科学进展》(Science Advances)上。当光线照射到半导体上时,其能量会被吸收。因此,带负电荷的电子和带正电荷的空穴在半导体中结合成对,形成激子。在最先进的二维半导体中,这些激子具有极高的结合能。在他们的研究中,研究人员为自己设定了一个挑战:研究激子的空穴。哥廷根大学的物理学家兼第一作者 Jan Philipp Bange 解释说:"在我们的实验室,我们使用光发射光谱来研究量子材料对光的吸收如何导致电荷转移过程。迄今为止,我们一直专注于电子-空穴对中的电子,我们可以使用电子分析仪测量这些电子。到目前为止,我们还没有任何方法可以直接获取空穴本身。因此,我们对如何不仅描述激子的电子,还能描述其空穴的特性这一问题很感兴趣"。为了回答这个问题,哥廷根大学物理系的马塞尔-罗伊策尔博士和斯特凡-马蒂亚斯教授领导的研究人员使用了一种特殊的光电子显微镜和高强度激光。在这一过程中,激子的破裂会导致实验中测得的电子能量损失。罗伊策尔解释说:"这种能量损失是不同激子的特征,取决于电子和空穴相互作用的环境。"在目前的研究中,研究人员使用了一种由两种不同原子厚度的半导体组成的结构,证明激子的空穴从一个半导体层转移到另一个半导体层,类似于太阳能电池。马尔堡大学的埃尔明-马利克教授团队能够通过一个模型来解释这一电荷转移过程,描述微观层面上发生的情况。马蒂亚斯总结道:"未来,我们希望利用电子和空穴相互作用的光谱特征来研究量子材料中超短时间和超长尺度的新阶段。这些研究可以成为开发新技术的基础,我们希望将来能为此做出贡献。"编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

小变化,大影响:同位素研究有望改变二维半导体工程

小变化,大影响:同位素研究有望改变二维半导体工程 研究人员发现,改变单层二硫化钼半导体中钼的同位素质量,可以改变该层在光照下发出的光的颜色。这项研究揭示了同位素工程设计二维材料新技术的潜力。资料来源:Chris Rouleau/ORNL,美国能源部同位素是一种元素家族中的成员,它们的质子数相同,但中子数不同,因此质量也不同。同位素工程学传统上侧重于增强在三维(或三维)范围内具有统一特性的所谓块体材料。但由 ORNL 领导的新研究推进了同位素工程的前沿领域,即电流被限制在平面晶体内的二维(或二维)范围内,而且一层只有几个原子厚。二维材料前景广阔,因为它们的超薄特性可以实现对其电子特性的精确控制。ORNL科学家肖凯说:"当我们在晶体中置换一种较重的钼同位素时,我们在单层二硫化钼的光电特性中观察到了令人惊讶的同位素效应,这种效应为设计用于微电子、太阳能电池、光电探测器甚至下一代计算技术的二维光电器件带来了机遇。"研究小组成员于一玲利用不同质量的钼原子,生长出了原子薄二硫化钼的同位素纯二维晶体。在光激发或光刺激下,于发现晶体发出的光的颜色发生了微小变化。肖说:"出乎意料的是,钼原子较重的二硫化钼发出的光向光谱的红色端偏移得更远,这与人们对块状材料的预期偏移相反。红色偏移表明材料的电子结构或光学特性发生了变化。"肖和研究小组与中佛罗里达大学的理论家沃洛迪米尔-特科夫斯基(Volodymyr Turkowski)和塔拉特-拉赫曼(Talat Rahman)合作,发现声子(即晶体振动)一定会在这些超薄晶体的有限尺寸内以意想不到的方式散射激子(即光激发子)。他们发现这种散射如何使较重同位素的光带隙向光谱的红色端移动。"光带隙"是指材料吸收或发射光所需的最小能量。通过调整带隙,研究人员可以使半导体吸收或发射不同颜色的光,这种可调性对于设计新设备至关重要。ORNL 的 Alex Puretzky 描述了生长在基底上的不同晶体如何因基底的区域应变而导致发射颜色的微小变化。为了证明异常同位素效应,并测量其大小以便与理论预测进行比较,于培育了二硫化钼晶体,在一个晶体中含有两种钼同位素。肖说:"我们的工作是史无前例的,因为我们合成了含有两种相同元素但质量不同的同位素的二维材料,并在单层晶体中以可控和渐进的方式横向连接了同位素。这使我们能够在二维材料中观察到光学特性的内在异常同位素效应,而不会受到不均匀样品的干扰。"研究结果表明,即使原子薄的二维半导体材料中同位素质量发生微小变化,也会影响光学和电子特性,这一发现为继续研究提供了重要依据。"以前,人们认为要制造光伏和光电探测器等设备,我们必须将两种不同的半导体材料结合起来,制造结来捕获激子并分离它们的电荷。但实际上,我们可以使用相同的材料,只需改变其同位素,就能制造出捕获激子的同位素结,"肖说。"这项研究还告诉我们,通过同位素工程,我们可以调整光学和电子特性,从而设计出新的应用。"在未来的实验中,肖和团队计划与高通量同位素反应堆和美国国家实验室同位素科学与工程局的专家合作。这些设施可以提供各种高浓缩同位素前驱体,用于生长不同的同位素纯二维材料。然后,研究小组可以进一步研究同位素对自旋特性的影响,以便将其应用于自旋电子学和量子发射。描述这项研究的论文发表在《科学进展》(Science Advances)上。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

新成像技术揭示有机半导体中的激子动力学 带来改进能量转换材料的潜力

新成像技术揭示有机半导体中的激子动力学 带来改进能量转换材料的潜力 图示:光激发有机半导体 "巴克明斯特富勒烯"两个分子中的电子。新形成的激子(如亮点所示)首先分布在两个分子上,然后才落在一个分子上(如图中右侧所示)。资料来源:Andreas Windischbacher新的成像技术揭示了有机半导体中的激子动力学,有助于深入了解其量子特性和改进能量转换材料的潜力。Wiebke Bennecke。图片来源:Fotostudio Roman Brodel/Braunschweig哥廷根大学、格拉茨大学、凯泽斯劳滕-朗道大学和格勒诺布尔-阿尔卑斯大学的研究人员现在首次非常快速、非常精确地拍摄到了这些激子的图像事实上,精确度达到了四十亿分之一秒(0.000,000,000,000,001s)和十亿分之一米(0.000,000,001m)。这种认识对于开发更高效的有机半导体材料至关重要。相关成果最近发表在科学杂志《自然通讯》上。了解激子动力学当光线照射到材料上时,一些电子会吸收能量,从而进入激发态。在有机半导体(如有机发光二极管中使用的半导体)中,这些受激电子和剩余"空穴"之间的相互作用非常强烈,电子和空穴不再能被描述为单独的粒子。相反,带负电荷的电子和带正电荷的空穴结合成对,称为激子。长期以来,从理论和实验角度理解有机半导体中这些激子的量子力学特性一直被认为是一项重大挑战。Matthijs Jansen 博士。图片来源:Christina Möller新方法揭示了这一难题。该研究的第一作者、哥廷根大学物理学家 Wiebke Bennecke 解释说:"利用我们的光发射电子显微镜,我们可以发现激子内部的吸引力极大地改变了它们的能量和速度分布。我们以极高的时间和空间分辨率测量了这些变化,并将它们与量子力学的理论预测进行了比较"。研究人员将这种新技术称为光发射激子层析成像技术。其背后的理论是由格拉茨大学的 Peter Puschnig 教授领导的团队开发的。半导体研究进展这项新技术使科学家们首次能够测量和观察激子的量子力学波函数。简单地说,波函数描述了激子的状态,并决定了其存在的概率。哥廷根大学的 Matthijs Jansen 博士解释了这一发现的意义:"我们研究的有机半导体是由 60 个碳原子组成的球形排列的富勒烯。问题是激子是否总是位于单个分子上,还是可以同时分布在多个分子上。这一特性会对太阳能电池中半导体的效率产生重大影响。"斯特凡-马蒂亚斯教授。图片来源:Stefan Mathias光发射激子层析技术提供了答案:激子在光的作用下产生后,立即分布在两个或更多的分子上。然而,在几个飞秒内,也就是在一秒钟的极小部分内,激子就会缩回到单个分子。未来,研究人员希望利用这种新方法记录激子的行为。哥廷根大学的斯特凡-马蒂亚斯(Stefan Mathias)教授认为,这很有潜力:"例如,我们希望了解分子的相对运动如何影响材料中激子的动力学。这些研究将有助于我们了解有机半导体的能量转换过程。我们希望这些知识将有助于开发更高效的太阳能电池材料"。编译自:ScitechDaily ... PC版: 手机版:

封面图片

一种新的掺杂方法利用空气和光来增强有机半导体的导电性

一种新的掺杂方法利用空气和光来增强有机半导体的导电性 这种新方法是将导电塑料浸入一种特殊的盐溶液(一种光催化剂)中,然后用光对其进行短时间的照射,从而得到一种掺杂 p 的导电塑料,在这种塑料中,唯一消耗的物质是空气中的氧气。资料来源:Thor Balkhed我们相信,这种方法将极大地影响我们掺杂有机半导体的方式。林雪平大学副教授西蒙娜-法比亚诺(Simone Fabiano)说:"所有元件都价格低廉、易于获得,而且可能对环境无害,这是未来可持续电子产品的先决条件。"基于导电塑料而非硅的半导体具有许多潜在应用。其中,有机半导体可用于数字显示器、太阳能电池、发光二极管、传感器、植入物和能源储存。林雪平大学有机电子实验室的研究人员杨志远、Simone Fabiano 和 Qingqing Wang。图片来源:Thor Balkhed为了增强导电性和改变半导体特性,通常会引入所谓的掺杂剂。这些添加剂可促进半导体材料内部电荷的移动,并可定制为诱导正电荷(p-掺杂)或负电荷(n-掺杂)。目前最常用的掺杂剂通常反应性很强(不稳定)、价格昂贵、制造难度大,或者三者兼而有之。现在,林雪平大学的研究人员开发出了一种可在室温下进行的掺杂方法,将氧等低效掺杂剂作为主要掺杂剂,并通过光激活掺杂过程。"我们的方法受到了大自然的启发,因为它与光合作用等有许多相似之处。在我们的方法中,光能激活光催化剂,然后促进电子从通常低效的掺杂剂转移到有机半导体材料,"Simone Fabiano 说。这种新方法是将导电塑料浸入一种特殊的盐溶液(一种光催化剂)中,然后用光照短时间。光照时间的长短决定了材料的掺杂程度。之后,将溶液回收以供将来使用,留下的是掺杂 p 的导电塑料,其中唯一消耗的物质是空气中的氧气。林雪平大学高级副教授 Simone Fabiano。图片来源:Thor Balkhed之所以能够做到这一点,是因为光催化剂充当了"电子穿梭机"的角色,在牺牲性弱氧化剂或还原剂存在的情况下,向材料吸收电子或捐献电子。这在化学中很常见,但以前从未在有机电子学中使用过。"我们还可以在同一反应中结合 p 掺杂和 n 掺杂,这是非常独特的。这简化了电子设备的生产,尤其是那些需要同时掺杂 p 和 n 的半导体的设备,如热电发生器。"Simone Fabiano 说:"所有部件都可以同时制造,同时掺杂,而不是一个一个地掺杂,这使得工艺更具可扩展性。"与传统半导体相比,掺杂有机半导体具有更好的导电性,而且这种工艺可以按比例放大。有机电子实验室的西蒙娜-法比亚诺(Simone Fabiano)及其研究小组于2024年早些时候展示了如何利用水等环保溶剂加工导电塑料;这是他们的下一步研究。沃伦贝格学院研究员西蒙娜-法比亚诺(Simone Fabiano)说:"我们正在努力全面了解其背后的机理以及还有哪些潜在的应用领域。但这是一种非常有前景的方法,表明光催化掺杂是有机电子学的新基石。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

有机半导体有望为太阳能应用带来革命性变化

有机半导体有望为太阳能应用带来革命性变化 太阳能在向清洁能源未来过渡的过程中发挥着至关重要的作用。通常,日常电子产品中常见的半导体硅被用来收集太阳能。然而,硅太阳能电池板有其局限性成本高昂,而且难以安装在曲面上。新研究部分解释了一类新型有机半导体非富勒烯受体(NFAs)的优异性能。研究人员已经开发出用于太阳能收集的替代材料,以解决这些缺陷。其中最有前途的是被称为"有机"半导体的碳基半导体,这种半导体在地球上资源丰富,成本较低,而且对环境友好。堪萨斯大学物理和天文学副教授Wai-Lun Chan说:"它们有可能降低太阳能电池板的生产成本,因为这些材料可以使用基于溶液的方法涂覆在任意表面上就像我们粉刷墙壁一样。这些有机材料可以在选定的波长下吸收光线,可用于制造透明的太阳能电池板或不同颜色的电池板。这些特性使得有机太阳能电池板特别适合用于下一代绿色和可持续建筑。"虽然有机半导体已被用于手机、电视和VR头显等消费电子产品的显示面板,但尚未广泛用于商用太阳能电池板。有机太阳能电池的一个缺点是光电转换效率较低,约为 12%,而单晶硅太阳能电池的转换效率可达 25%。根据 Chan 的说法,有机半导体中的电子通常会与被称为"空穴"的正电子结合。这样,有机半导体吸收的光通常会产生电中性的准粒子,即"激子"。但是,最近一类被称为非富勒烯受体(NFAs)的新型有机半导体的开发改变了这一模式。使用非富勒烯受体(NFAs)制造的有机太阳能电池的效率可接近 20% 大关。尽管性能出众,但科学界仍不清楚这一类新型非氟烷烃为何明显优于其他有机半导体。在发表于《先进材料》(Advanced Materials)上的一项突破性研究中,陈和他的团队,包括物理和天文学系的研究生库沙尔-里贾尔(Kushal Rijal,第一作者)、内诺-富勒(Neno Fuller)和法蒂玛-鲁达尼(Fatimah Rudayni),与昆士兰大学化学教授辛迪-贝里(Cindy Berrie)合作,发现了一种微观机制,部分解决了无损检测器所取得的卓越性能。主要作者 Kushal Rijal(右)和 Neno Fuller(左)使用图中所示的超高真空光发射光谱系统进行了 TR-TPPE 测量。图片来源:Kushal 和 Fuller这一发现的关键在于领衔作者里贾尔利用一种被称为"时间分辨双光子光发射光谱"(TR-TPPE)的实验技术进行的测量。这种方法使研究小组能够以亚皮秒级的时间分辨率(小于一万亿分之一秒)跟踪激发电子的能量。"在这些测量中,Kushal [Rijal]观察到,NFA中的一些光激发电子可以从环境中获得能量,而不是向环境中损失能量,"Chan说。"这一观察结果与直觉相反,因为激发电子通常会向环境中损失能量,就像一杯热咖啡向周围环境中损失热量一样。"该研究小组的工作得到了美国能源部基础能源科学办公室的支持,他们认为,这种不寻常的过程之所以能在微观尺度上发生,是因为电子的量子行为允许一个激发电子同时出现在多个分子上。热力学第二定律认为,每个物理过程都会导致总熵(通常称为"无序")的增加,这种量子怪异性与热力学第二定律相结合,产生了不寻常的能量增益过程。Rijal说:"在大多数情况下,热物体会将热量传递给周围的冷物体,因为热量传递会导致总熵增加。但我们发现,对于以特定纳米级结构排列的有机分子来说,典型的热流方向是相反的,这样总熵才会增加。这种反向热流允许中性激子从环境中获得热量,并解离成一对正负电荷。这些自由电荷反过来又能产生电流"。根据他们的实验结果,研究小组提出,这种由熵驱动的电荷分离机制可使使用 NFA 制造的有机太阳能电池获得更高的效率。Rijal说:"了解了电荷分离的基本机制,研究人员就能设计出新的纳米结构,利用熵的优势在纳米尺度上引导热量或能量流动。尽管熵是物理学和化学中一个众所周知的概念,但很少有人积极利用它来提高能量转换设备的性能。"不仅如此:科大团队认为,这项工作中发现的机制不仅可以用来生产更高效的太阳能电池,还可以帮助研究人员设计出更高效的光催化剂,用于太阳能燃料生产,这是一种利用阳光将二氧化碳转化为有机燃料的光化学过程。编译自/ScitechDaily ... PC版: 手机版:

封面图片

美国政府将资助半导体领域的数字孪生体研究

美国政府将资助半导体领域的数字孪生体研究 数字孪生体是模仿真实版本的物理芯片的虚拟代表,可以更容易地模拟芯片对功率提升或不同数据配置的反应。这有助于研究人员在新处理器投入生产前对其进行测试。商务部长吉娜-雷蒙多(Gina Raimondo)在一份新闻稿中说:"数字孪生技术有助于在全国范围内激发半导体研究、开发和制造方面的创新,但前提是我们必须投资于美国对这项新技术的理解和能力。"数字孪生研究表明,它可以与生成式人工智能等其他新兴技术相结合,加速模拟或进一步研究新的半导体概念。拜登政府的官员表示,本月将与有关各方举行简报会,讨论资助机会。政府将资助研究所的运营活动、围绕数字孪生体的研究、实体和数字设施(如云环境访问)以及劳动力培训。2022 年通过的《CHIPS 法案》旨在促进美国半导体制造业的发展,但却难以满足资金需求。雷蒙多此前表示,制造商申请的补助金超过 700 亿美元,超过了政府预算的 280 亿美元投资。到目前为止,英特尔(Intel)和美光(Micron)等公司将通过《CHIPS 法案》获得美国政府的资助。拜登政府制定《CHIPS 法案》的部分目标是鼓励半导体公司在美国制造新型处理器,尤其是在人工智能热潮导致对高功率芯片需求增长的今天。 ... PC版: 手机版:

封面图片

#半导体 对华 制裁 名单

#半导体 对华 制裁 名单 12.2 美国商务部工业和安全局(BIS)修订《出口管制条例》,将140家中国半导体相关企业列入实体清单,重点打击国产半导体设备厂商及其子公司,包括北方华创、拓荆科技等,涉及半导体制造、EDA软件、光刻胶、大硅片、电子特气及功率半导体等多个领域。此外,闻泰科技、建广资产等也在名单中,限制这些企业获取美国关键技术和设备,旨在遏制中国半导体产业发展。 说明:上述列表中排除部分已注销的公司。排除后列出130家。部分公司名称可能存在多个版本。

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人