科学家通过介电元原子排列液晶 制作出新型电控元表面

科学家通过介电元原子排列液晶 制作出新型电控元表面 介电元表面是当前光学领域最前沿的研究和应用方向之一。它们不仅具有低损耗的优势,还能实现亚波长尺度的器件厚度。此外,它们还能在振幅、相位和偏振等多个维度上自由调制光。这种能力是传统光学所缺乏的,对未来光学系统的集成、微型化和扩展具有重要意义。因此,介电元表面吸引了越来越多的工业关注。在这项研究中,剑桥大学的朱大平教授团队开发出了一种基于液晶的新型可调介电元表面。通过利用介电元表面对液晶的固有配向效应和电可控特性,无需使用液晶配向层材料和相关工艺,从而节省了设备制造时间和成本。这对硅基液晶(LCoS)等设备具有实际意义。介电元表面是当前光学领域最前沿的研究和应用方向之一。它们不仅具有低损耗的优势,还能实现亚波长尺度的器件厚度。资料来源:Advanced Devices & Instrumentation研究小组通过测量器件在不同角度的透射率,定量研究了元表面本身对液晶的配准效应的强度。他们得到的明暗对比度为 25.6。与此同时,研究团队还在实验中实现了近红外通信波段 94% 的调制深度。本研究提出了一种基于液晶的新型电控元表面。通过利用元表面对液晶的固有对准效应,省去了传统液晶器件中的对准过程,从而为传统液晶器件带来了巨大的经济价值。此外,由于元表面具有亚波长特性,理论上可以将器件做得非常薄,从而有效提高液晶器件的响应速度和分辨率。对于传统液晶器件(如 LCoS)而言,集成了元表面的液晶器件具有重要的研究价值。编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

中国科学家“看到”冰表面原子结构

中国科学家“看到”冰表面原子结构 北京大学物理学院、北京怀柔综合性国家科学中心轻元素量子材料交叉平台(简称轻元素平台)组成的研究团队,利用自主研发的国产 qPlus 型扫描探针显微镜,在国际上首次“看到”冰表面的原子结构,并揭示其在零下 153 摄氏度即开始融化的奥秘。该成果 22 日晚发表于国际学术期刊《》上。 冰表面的研究对探索生命起源和物质来源具有重要意义,但因缺乏原子尺度实验工具,科学界对冰表面结构的基本问题一直未有明确解答。 据介绍,团队利用 qPlus 型扫描探针显微镜,开发出可分辨氢原子和化学键的成像技术,实现冰表面水分子氢键网络的精确识别和氢原子分布的精准定位。探测发现,冰表面结构同时存在六角密堆积和立方密堆积两种排列方式,且拼接堆砌形成稳定的网络结构。 轻元素平台负责人江颖教授表示:“我们通过变温实验,首次在原子尺度上‘看到’冰表面预融化的过程,发现其在零下 153 摄氏度时就开始融化,这对理解冰面的润滑现象、云的形成及冰川的消融过程等至关重要”。来源 , 频道:@kejiqu 群组:@kejiquchat

封面图片

韩国科学家开发出创新型月球表面模拟舱

韩国科学家开发出创新型月球表面模拟舱 在地球上模拟月球静电环境方面取得的突破为未来的月球探索奠定了良好的基础。通过精确复制和评估月球尘埃的影响,这项技术为克服太空任务中的主要障碍之一提供了重要见解,为先进的月球研究和原地资源利用计划铺平了道路。光电电流测量装置照片。资料来源:韩国土木建筑技术研究院(KICT)执行月球任务的最严重威胁之一是月球表面带静电的环境。由于月球大气层极其稀薄,月球直接暴露在太阳紫外线、X 射线、太阳风、地球等离子体等的照射下。因此,月球上的尘埃云呈现出强烈的静电。月球的静电环境白天带正电,夜间带负电。由于月球上几乎没有大气层,空气阻力极小,即使是很小的撞击也能轻易吹走尘埃。带静电的碎石颗粒粘附在空间探索设备上时,可能会对其造成严重损害。例如,当粘附在光伏电池上时,这些颗粒会降低发电效率。在载人飞行任务中,它们会损坏保护宇航员的太空服,或穿透呼吸系统,造成危及生命的后果。KICT的研究小组由Shin, Hyusoung博士(与资深研究员Chung, Taeil和Park, Seungsoo博士一起)领导,开发了一个旨在模拟带电条件的试验室。其目的是实现类似月球表面的静电环境。附说明的设计测量单元原理图(不按比例)。资料来源:韩国土木建筑技术研究院(KICT)韩国信息和通信技术研究所开发的试验室集成了紫外线灯、电子束和等离子体发生器,可对测试物体表面进行正电或负电充电。该设备可用于利用紫外线辐射和电子束对月球土壤的复制品进行静电充电。这将有助于确定月球车上附着了多少材料,并预测潜在的问题。这项技术不仅仅是进行静电充电,还可以模拟月球在各种条件下的带电环境,如白天或夜晚环境,以及受地球等离子体影响的环境。这项研究工作的最大成就在于所开发的设备能够以定量和独立的方式测量所产生的光电流量,而光电流量对月尘在月昼期间的充电影响最大。这项研究获得的实验测量值与相应理论值之间的误差大约在 5%以内,这证明了所开发技术的可靠性。因此,KICT 的尝试不仅成功地再现了土壤尘埃仍带静电的类似月球的环境,而且还开发了相关的评估技术。这项研究工作为在大型脏热真空室(DTVC)中配备所开发的设备,以实现静电环境并进一步评估其性能奠定了基础。领导该项目的申博士说:"我们的研究提出了将韩国在世界上首次开发的全尺寸DTVC与月球尘埃充电技术有效结合的可能性。这一解决方案将成为未来在月球上实施原地资源利用(ISRU)的一系列技术的试验台,解决并应对带电月球尘埃带来的一系列潜在技术挑战。"编译自:ScitechDaily ... PC版: 手机版:

封面图片

科学家在2D蛭石材料中发现铁电性 有望实现电极间距英寸级的液晶器件

科学家在2D蛭石材料中发现铁电性 有望实现电极间距英寸级的液晶器件 显示干涉色的二维蛭石 LC 偏振光学图像。然而,无论是商用有机液相色谱分子还是研发的液相色谱纳米材料都不符合上述两个先决条件,而且迄今为止还没有关于这种液相色谱的报道。就目前而言,这种液相色谱是否存在以及其电场响应度的上限是液相色谱界尚未解决的问题。针对这些问题,清华大学深圳研究生院刘碧录教授领导的研究团队首次揭示了具有百年历史的粘土矿物蛭石在单层极限下的铁电性。二维蛭石具有极大的几何各向异性,铁电性赋予其内在的电偶极子。通过将二维蛭石分散在去离子水中,研究团队制备出了含有二维铁电分子的低密度聚乙烯分散体。它的电场响应性(即克尔系数)将克尔系数的记录值提高了一个数量级。考虑到二维蛭石低电平代表了一类新型的二维铁电材料无机各向同性低电平,这项工作提供的物理启示,如低电平材料的响应度和几何各向异性之间的关系,对其他潜在的类似低电平具有普遍意义。a) 二维蛭石的 AFM 图像。 b) 二维蛭石的 PFM 振幅图。 c) 二维蛭石的 PFM 相图。电场响应性的突破实现了超低工作电场,并制造出电极间距仅为英寸级的电光液晶器件,而这在以前是不现实的。研究人员还制作了一个具有英寸级像素的大型节能可显示广告牌原型,用于户外互动场景,可通过智能手机软件或人类手势控制广告牌上的字母和数字。"在科学上,我们给出了一种新的策略来设计具有灵敏电场响应性的先进无机低电平或类低电平系统。关键是从层状体中制备出二维铁电材料分散体。"刘碧录教授说:"从另一个角度看,层状天然矿物中二维铁电性的启发性证据为范德华铁电材料的规模化生产和实际应用带来了新的机遇。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家开发出制造有机半导体的新型可持续方法

科学家开发出制造有机半导体的新型可持续方法 林雪平大学的研究引入了一种使用水等良性溶剂加工共轭聚合物的新方法。新油墨还具有高度导电性。资料来源:Thor Balkhed作为传统硅基电子器件的补充,有时甚至是替代品,有机电子器件正在崛起。有机电子产品具有制造简单、灵活性高、重量轻等特点,同时还具有传统半导体的电气特性,因此可用于数字显示、能源存储、太阳能电池、传感器和软植入物等应用。有机电子器件由半导体塑料(即共轭聚合物)制成。然而,加工共轭聚合物通常需要使用对环境有害、有毒和易燃的溶剂。这是有机电子产品广泛商业化和可持续使用的主要障碍。现在,林雪平大学的研究人员开发出了一种新的可持续方法,可以从水中加工这些聚合物。这种新型油墨不仅更具可持续性,还具有高度导电性。刘铁峰,有机电子学实验室博士后。资料来源:Thor Balkhed"我们的研究引入了一种利用水等良性溶剂加工共轭聚合物的新方法。"有机电子实验室资深副教授西蒙娜-法比亚诺(Simone Fabiano)说:"利用这种被称为地态电子转移的方法,我们不仅可以解决使用有害化学物质的问题,还能证明材料性能和设备性能的改善。"当研究人员将这种新型导电墨水作为有机太阳能电池的传输层进行测试时,发现其稳定性和效率均高于传统材料。他们还测试了用这种油墨制造电化学晶体管和人工神经元的情况,结果表明其工作频率与生物神经元相似。"我相信,这些成果将对有机电子领域产生变革性影响。通过利用水等绿色和可持续溶剂加工有机半导体,我们可以大规模生产对环境影响最小的电子设备,"瓦伦贝格学院研究员西蒙娜-法比亚诺(Simone Fabiano)说。编译自/scitechdaily ... PC版: 手机版:

封面图片

科学家发明新型半导体激发技术

科学家发明新型半导体激发技术 横滨国立大学的科学家和加州理工学院的同事利用高强度、宽频带的超快太赫兹脉冲,在一种二维半导体材料中实现了原子激发,推动了电子设备的发展。他们的论文于 3 月 19 日发表在《应用物理通讯》(Applied Physics Letters)杂志上,并作为编辑推荐文章。二维(2D)材料或片状纳米材料因其独特的电子特性而成为未来半导体应用的理想平台。过渡金属二掺杂物(TMDs)是二维材料中的一个重要类别,由夹在掺杂物原子层之间的过渡金属原子层组成。这些原子以晶格结构排列,可以围绕其平衡位置振动或振荡这种集体激发被称为相干声子,在决定和控制材料特性方面起着至关重要的作用。声波诱导技术的创新传统上,相干声子由可见光和近红外区域的超短脉冲激光器诱导。使用其他光源的方法仍然有限。横滨国立大学工程科学研究生院助理教授、该研究的第一作者 Satoshi Kusaba 说:"我们的研究解决了超快太赫兹频率激光器(或低能光子)如何在 TMD 材料中诱导相干声子这一基本问题。"WSe2 中声子的超快宽带太赫兹激发和偏振旋转探测示意图。获得的结果(右下)包括通过和频过程激发的相干声子振荡信号(右上)。资料来源:Satoshi Kusaba / 横滨国立大学太赫兹辐射是指频率在太赫兹范围内的电磁波,介于微波和红外频率之间。研究小组制备了超快宽带太赫兹脉冲,以诱导一种名为WSe2 的 TMD 薄膜中的相干声子动力学。为检测光学各向异性(换句话说,即光在穿过材料时的表现),研究人员安排了一套精确而灵敏的装置。研究人员研究了超短激光脉冲与材料相互作用时电场方向的变化;这些变化被称为偏振旋转。通过仔细观察微小的诱导光学各向异性,研究小组成功地探测到了太赫兹脉冲诱导的声子信号。"我们的研究最重要的发现是,太赫兹激发可以通过一个独特的和频激发过程在TMD中诱导相干声子,"研究时的加州理工学院博士生、本研究的共同第一作者Haw-Wei Lin说。"这种机制与共振和线性吸收过程有着本质区别,它涉及两个太赫兹光子的能量总和与声子模式的能量总和相匹配"。由于通过这种和频过程可以激发的声子模式的对称性完全不同于更典型的共振线性过程,因此本研究中成功使用的激发过程对于完全控制材料中的原子运动非常重要。这项研究成果的意义超出了基础研究的范畴,有望在现实世界中得到广泛应用。"通过和频激发过程,我们可以利用太赫兹激发相干地控制二维原子位置,"Kusaba说。"这可能为控制 TMD 的电子状态打开大门,这对于开发谷电技术和使用 TMD 的电子设备,实现低功耗、高速计算和专用光源,是大有可为的"。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

韩国科学家研制出治疗骨骼破裂的新型“骨绷带”材料

韩国科学家研制出治疗骨骼破裂的新型“骨绷带”材料 骨再生是一个复杂的过程,目前促进骨再生的方法,如移植物和应用生长因子,都面临着费用增加等挑战。然而,随着一种能够促进骨组织发育的压电材料的问世,这一研究取得了突破性进展。由材料科学与工程系(DMSE)Seungbum Hong教授领导的KAIST研究小组于1月25日宣布,利用羟基磷灰石(HAp)独特的成骨能力,开发出了一种生物仿生支架,可在施加压力时产生电信号。这项研究是与全南国立大学聚合生物系统工程系的 Jangho Kim 教授领导的团队合作进行的。HAp 是一种存在于骨骼和牙齿中的基本磷酸钙物质。这种具有生物相容性的矿物质还具有防止蛀牙的作用,常用于牙膏中。骨再生领域的突破以往关于压电支架的研究证实了压电性在促进骨再生和改善各种聚合物基材料的骨融合方面的作用,但在模拟最佳骨组织再生所需的复杂细胞环境方面受到限制。然而,这项研究提出了一种新方法,利用 HAp 独特的成骨能力来开发一种模拟活体骨组织环境的材料。压电和地形生物仿生支架的设计和表征。(a) 通过加入 HAp 的 P(VDF-TrFE)支架提供的电学和地形学线索增强骨再生机制的示意图。(b) 制作过程示意图。资料来源:KAIST 材料成像与集成实验室研究小组开发了一种将 HAp 与聚合物薄膜融合在一起的制造工艺。通过对大鼠进行体外和体内实验,该工艺开发出的柔性独立支架在促进骨再生方面具有显著的潜力。了解骨再生原理研究小组还确定了其支架所依据的骨再生原理。他们利用原子力显微镜(AFM)分析了支架的电特性,并评估了与细胞形状和细胞骨骼蛋白形成有关的详细表面特性。他们还研究了压电性和表面特性对生长因子表达的影响。韩国科学技术院DMSE的Hong教授说:"我们开发出了一种基于HAp的压电复合材料,它可以像'骨绷带'一样加速骨再生。他补充说:"这项研究不仅为生物材料的设计提出了新的方向,而且在探索压电性和表面特性对骨再生的影响方面也具有重要意义。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人