科学家发明新型半导体激发技术

科学家发明新型半导体激发技术 横滨国立大学的科学家和加州理工学院的同事利用高强度、宽频带的超快太赫兹脉冲,在一种二维半导体材料中实现了原子激发,推动了电子设备的发展。他们的论文于 3 月 19 日发表在《应用物理通讯》(Applied Physics Letters)杂志上,并作为编辑推荐文章。二维(2D)材料或片状纳米材料因其独特的电子特性而成为未来半导体应用的理想平台。过渡金属二掺杂物(TMDs)是二维材料中的一个重要类别,由夹在掺杂物原子层之间的过渡金属原子层组成。这些原子以晶格结构排列,可以围绕其平衡位置振动或振荡这种集体激发被称为相干声子,在决定和控制材料特性方面起着至关重要的作用。声波诱导技术的创新传统上,相干声子由可见光和近红外区域的超短脉冲激光器诱导。使用其他光源的方法仍然有限。横滨国立大学工程科学研究生院助理教授、该研究的第一作者 Satoshi Kusaba 说:"我们的研究解决了超快太赫兹频率激光器(或低能光子)如何在 TMD 材料中诱导相干声子这一基本问题。"WSe2 中声子的超快宽带太赫兹激发和偏振旋转探测示意图。获得的结果(右下)包括通过和频过程激发的相干声子振荡信号(右上)。资料来源:Satoshi Kusaba / 横滨国立大学太赫兹辐射是指频率在太赫兹范围内的电磁波,介于微波和红外频率之间。研究小组制备了超快宽带太赫兹脉冲,以诱导一种名为WSe2 的 TMD 薄膜中的相干声子动力学。为检测光学各向异性(换句话说,即光在穿过材料时的表现),研究人员安排了一套精确而灵敏的装置。研究人员研究了超短激光脉冲与材料相互作用时电场方向的变化;这些变化被称为偏振旋转。通过仔细观察微小的诱导光学各向异性,研究小组成功地探测到了太赫兹脉冲诱导的声子信号。"我们的研究最重要的发现是,太赫兹激发可以通过一个独特的和频激发过程在TMD中诱导相干声子,"研究时的加州理工学院博士生、本研究的共同第一作者Haw-Wei Lin说。"这种机制与共振和线性吸收过程有着本质区别,它涉及两个太赫兹光子的能量总和与声子模式的能量总和相匹配"。由于通过这种和频过程可以激发的声子模式的对称性完全不同于更典型的共振线性过程,因此本研究中成功使用的激发过程对于完全控制材料中的原子运动非常重要。这项研究成果的意义超出了基础研究的范畴,有望在现实世界中得到广泛应用。"通过和频激发过程,我们可以利用太赫兹激发相干地控制二维原子位置,"Kusaba说。"这可能为控制 TMD 的电子状态打开大门,这对于开发谷电技术和使用 TMD 的电子设备,实现低功耗、高速计算和专用光源,是大有可为的"。编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

科学家利用激光技术揭示了量子材料隐藏的特性

科学家利用激光技术揭示了量子材料隐藏的特性 加州大学圣迭戈分校的研究人员利用一种先进的光学技术进一步了解了一种名为Ta2NiSe5(TNS)的量子材料。他们的研究成果发表在《自然-材料》(Nature Materials)杂志上。材料可以通过不同的外部刺激受到扰动,通常是温度或压力的变化;然而,由于光是宇宙中速度最快的东西,材料对光刺激的反应非常快,从而揭示出原本隐藏的特性。通过改进技术,研究小组获得了更广泛的频率范围,从而揭示了 TNS 激子凝聚态的一些隐藏特性。资料来源:Sheikh Rubaiat Ul Haque / 斯坦福大学量子材料中的先进光学技术"从本质上讲,我们用激光照射一种材料,这就像定格摄影,我们可以逐步跟踪该材料的某种特性,"领导这项研究的物理学教授理查德-阿维特说,他也是论文的作者之一。"通过观察组成粒子如何在该系统中移动,我们可以找出这些以其他方式很难发现的特性。"该实验由第一作者谢赫-鲁巴亚特-乌尔-哈克(Sheikh Rubaiat Ul Haque)完成,他于2023年从加州大学圣地亚哥分校毕业,现在是斯坦福大学的一名博士后学者。他与阿弗里特实验室的另一名研究生张远一起改进了一种名为太赫兹时域光谱学的技术。这项技术允许科学家在一定频率范围内测量材料的特性,而哈克的改进使他们能够获得更广泛的频率范围。量子态和光放大这项工作基于论文的另一位作者、苏黎世联邦理工学院教授尤金-德姆勒(Eugene Demler)提出的理论。Demler 和他的研究生马里奥斯-迈克尔(Marios Michael)提出了这样一个观点:当某些量子材料被光激发时,它们可能会变成一种能放大太赫兹频率光的介质。这促使哈克及其同事仔细研究 TNS 的光学特性。当电子被光子激发到更高的层次时,会留下一个空穴。如果电子和空穴结合在一起,就会产生激子。激子还可能形成凝聚态当粒子聚集在一起并表现为单一实体时会出现的一种状态。在 Demler 理论的支持下,利用马克斯-普朗克物质结构与动力学研究所 Angel Rubio 小组的密度泛函计算,研究小组得以观测到反常的太赫兹光放大现象,从而揭示了 TNS 激子凝聚态的一些隐藏特性。凝缩物是一种定义明确的量子态,使用这种光谱技术可以将它们的某些量子特性印刻到光上。这可能会对利用量子材料的纠缠光源(多个光源具有相互关联的特性)这一新兴领域产生影响。哈克说:"我认为这是一个广阔的领域。Demler的理论可以应用于一系列具有非线性光学特性的其他材料。有了这项技术,我们就能发现以前从未探索过的新的光诱导现象。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家开发出制造有机半导体的新型可持续方法

科学家开发出制造有机半导体的新型可持续方法 林雪平大学的研究引入了一种使用水等良性溶剂加工共轭聚合物的新方法。新油墨还具有高度导电性。资料来源:Thor Balkhed作为传统硅基电子器件的补充,有时甚至是替代品,有机电子器件正在崛起。有机电子产品具有制造简单、灵活性高、重量轻等特点,同时还具有传统半导体的电气特性,因此可用于数字显示、能源存储、太阳能电池、传感器和软植入物等应用。有机电子器件由半导体塑料(即共轭聚合物)制成。然而,加工共轭聚合物通常需要使用对环境有害、有毒和易燃的溶剂。这是有机电子产品广泛商业化和可持续使用的主要障碍。现在,林雪平大学的研究人员开发出了一种新的可持续方法,可以从水中加工这些聚合物。这种新型油墨不仅更具可持续性,还具有高度导电性。刘铁峰,有机电子学实验室博士后。资料来源:Thor Balkhed"我们的研究引入了一种利用水等良性溶剂加工共轭聚合物的新方法。"有机电子实验室资深副教授西蒙娜-法比亚诺(Simone Fabiano)说:"利用这种被称为地态电子转移的方法,我们不仅可以解决使用有害化学物质的问题,还能证明材料性能和设备性能的改善。"当研究人员将这种新型导电墨水作为有机太阳能电池的传输层进行测试时,发现其稳定性和效率均高于传统材料。他们还测试了用这种油墨制造电化学晶体管和人工神经元的情况,结果表明其工作频率与生物神经元相似。"我相信,这些成果将对有机电子领域产生变革性影响。通过利用水等绿色和可持续溶剂加工有机半导体,我们可以大规模生产对环境影响最小的电子设备,"瓦伦贝格学院研究员西蒙娜-法比亚诺(Simone Fabiano)说。编译自/scitechdaily ... PC版: 手机版:

封面图片

科学家发现新型锂离子导体 可用于强化电动汽车电池

科学家发现新型锂离子导体 可用于强化电动汽车电池 利物浦大学的一个团队开发出了一种新型固态锂离子导体,可以取代电池中的液态电解质,从而提高安全性和效率。图片表示锂离子(蓝色)在结构上移动。资料来源:利物浦大学这种新材料由无毒的地球富集元素组成,具有足够高的锂离子传导性,可以取代目前锂离子电池技术中的液态电解质,提高安全性和能量容量。该大学的跨学科研究团队采用变革性科学方法来设计这种材料,他们在实验室中合成了这种材料,确定了它的结构(原子在空间中的排列),并在电池中进行了演示。这种新材料是极少数能达到足以取代液态电解质的高锂离子电导率的固体材料之一,并且由于其结构而能以一种新的方式工作。这一发现是通过合作计算和实验工作流程实现的,该流程利用人工智能和基于物理学的计算来支持大学化学专家的决策。这种新材料为化学优化提供了一个平台,以进一步提高材料本身的性能,并根据研究提供的新认识来确定其他材料。利物浦大学化学系马特-罗森斯基(Matt Rosseinsky)教授说:"这项研究展示了一种新型功能材料的设计和发现。这种材料的结构改变了人们以往对高性能固态电解质的理解。具体来说,具有多种不同移动离子环境的固体可以表现出很好的性能,而不仅仅是离子环境范围很窄的少数固体。这极大地开拓了进一步发现的化学空间。"最近的报道和媒体报道预示着人工智能工具已被用于寻找潜在的新材料。在这种情况下,人工智能工具是独立工作的,因此很可能会以各种方式重现它们接受过的训练,生成的材料可能与已知材料非常相似。"这篇发现研究论文表明,人工智能和由专家调配的计算机可以解决现实世界材料发现的复杂问题,在这个问题上,我们寻求的是成分和结构上有意义的差异,其对性能的影响要根据理解来评估,我们的颠覆性设计方法为发现这些以及其他依赖离子在固体中快速运动的高性能材料提供了一条新的途径"。这项研究由利物浦大学化学系、材料创新工厂、利弗胡尔姆功能材料设计研究中心、史蒂芬森可再生能源研究所、阿尔伯特-克鲁中心和工程学院的研究人员共同努力完成。并得到了工程与物理科学研究理事会(EPSRC)、勒弗胡尔姆信托基金会(Leverhulme Trust)和法拉第研究所(Faraday Institution)的资助。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家发现新型二维量子材料 质量增加100倍

科学家发现新型二维量子材料 质量增加100倍 "CeSiI中的电子比普通材料中的电子质量大100倍。这就是它们被称为重费米子的原因。"这项研究背后的乌普萨拉大学研究人员之一Chin-Shen Ong说:"CeSiI的特别之处在于,这种有效质量是各向异性的,它取决于电子在原子层中移动的方向。"瑞典乌普萨拉大学物理与天文学系研究员Chin-Shen Ong。资料来源:乌普萨拉大学这项研究是乌普萨拉大学材料理论研究人员与美国哥伦比亚大学研究人员的合作成果。对于乌普萨拉大学的材料研究人员来说,主要问题是从理论上研究材料中电子的量子特性。重费米子的背景和意义重费米子化合物是一类电子相互作用异常强烈的材料。在此过程中,它们在所谓的量子波动中协调运动。这种相互作用使电子的质量比普通材料中的电子大 100 或 1000 倍。这些量子波动被认为在许多至今无法解释的量子现象中发挥了重要作用,如非常规超导现象(电流可以通过材料而不损失能量)和磁性。这种新型量子材料是在哥伦比亚大学实验室合成的,其独特之处在于它具有类似二维的晶体结构,各层之间有明显的分离,原子厚度很薄。这些层由铈、硅和碘(CeSiI)组成,是首例具有重费米子的二维材料。有关重费米子材料的研究已经进行了几十年,但直到现在,研究重点仍是原子紧密排列成三维结构的材料。早在 20 世纪 70 年代,乌普萨拉大学的研究人员就开始重点研究铈基材料,并取得了巨大成功。然而,由哥伦比亚大学实验室合成的这种新材料却独一无二,因为它具有类似二维的晶体结构,各层之间有明显的分离,原子厚度很薄。这些层由铈层、硅层和碘层(CeSiI)组成,是首例具有重费米子的二维材料。"有了这一发现,我们现在有了一个大大改进的材料平台,可以用来研究相关电子结构。二维材料就像乐高积木。我们的合作伙伴已经在着手添加其他二维材料的层,以创造出一种具有定制量子特性的新材料,"Chin-Shen Ong 说。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

剑桥科学家在新型二维材料中实现了长期追求的量子态稳定性

剑桥科学家在新型二维材料中实现了长期追求的量子态稳定性 卡文迪什实验室的研究人员在六方氮化硼(hBN)中发现了原子缺陷在环境条件下的自旋相干性,这是量子材料领域的一项罕见成就。这项发表在《自然-材料》(Nature Materials)上的研究强调,这些自旋可以用光来控制,对未来的量子技术(包括传感和安全通信)具有广阔的前景。研究结果还强调了进一步探索提高缺陷可靠性和延长自旋存储时间的必要性,凸显了氢化硼在推进量子技术应用方面的潜力。资料来源:埃莉诺-尼科尔斯,卡文迪什实验室自旋相干性是指电子自旋能够长期保持量子信息。这一发现意义重大,因为能够在环境条件下承载量子特性的材料相当罕见。发表在《自然-材料》(Nature Materials)上的研究结果进一步证实,室温下可获得的自旋相干性比研究人员最初想象的要长。论文共同作者、卡文迪什实验室 Rubicon 博士后研究员 Carmem M. Gilardoni 说:"研究结果表明,一旦我们在这些电子的自旋上写入某种量子态,这种信息就能存储约百万分之一秒,从而使这一系统成为一个非常有前景的量子应用平台。""这看起来似乎很短,但有趣的是,这个系统并不需要特殊的条件它甚至可以在室温下存储自旋量子态,而且不需要大型磁铁"。六方氮化硼(hBN)是一种由一原子厚的层堆叠而成的超薄材料,有点像纸张。这些层通过分子间的作用力固定在一起。但有时,这些层内会出现"原子缺陷",类似于晶体内部夹杂着分子。这些缺陷可以通过明确的光学转变吸收和发射可见光范围内的光,还可以作为电子的局部陷阱。由于 hBN 中存在这些"原子缺陷",科学家们现在可以研究这些被困电子的行为方式。他们可以研究电子与磁场相互作用的自旋特性。真正令人兴奋的是,研究人员可以在室温下利用这些缺陷中的光来控制和操纵电子自旋。这一发现为未来的技术应用,尤其是传感技术的应用铺平了道路。不过,由于这是首次有人报告该系统的自旋相干性,因此在其成熟到足以用于技术应用之前,还有很多问题需要研究。科学家们仍在研究如何使这些缺陷变得更好、更可靠。他们目前正在探究我们能在多大程度上延长自旋存储时间,以及我们能否优化对量子技术应用非常重要的系统和材料参数,如缺陷的长期稳定性和该缺陷发出的光的质量。"与这一系统的合作向我们彰显了材料基础研究的力量。至于 hBN 系统,作为一个领域,我们可以在其他新材料平台中利用激发态动力学,用于未来的量子技术。"论文第一作者 Hannah Stern 博士说,她在卡文迪什实验室进行了这项研究,现在是英国皇家学会大学研究员兼曼彻斯特大学讲师。未来,研究人员将进一步开发该系统,探索从量子传感器到安全通信等多个不同方向。"每一个新的有前途的系统都将拓宽可用材料的工具包,而朝着这个方向迈出的每一步都将推动量子技术的可扩展实施。这些成果证实了层状材料有望实现这些目标,"领导该项目的卡文迪什实验室主任梅特-阿塔图雷(Mete Atatüre)教授总结道。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家发明从海水中提取铀用于核能的新技术

科学家发明从海水中提取铀用于核能的新技术 核能反应堆释放原子内部自然储存的能量,并通过将原子真正击碎这一过程被称为裂变将其转化为热能和电能。铀是这一过程中最受欢迎的元素,因为它的所有形态都具有不稳定性和放射性,很容易分裂。目前,这种金属是从岩石中提取的,但铀矿储量有限。然而,据核能机构估计,有 45 亿吨铀以溶解铀酰离子的形式漂浮在我们的海洋中。这一储量是陆地上储量的 1000 多倍。但事实证明,提取这些离子具有挑战性,因为提取材料没有足够的表面积来有效捕获离子。因此,东北师范大学化学学院的Rui Zhao, Guangshan Zhu及其同事希望开发一种具有大量微观角落和缝隙的电极材料,用于电化学捕获海水中的铀离子。这种新型涂层布能有效地在其表面积聚来自含铀海水的铀(黄色)。来源:改编自《美国化学学会中心科学》,2023 年,DOI: 10.1021/acscentsci.3c01291为了制作电极,研究小组首先使用碳纤维编织的柔性布。他们在布上涂上两种特殊的单体,然后进行聚合。接着,他们用盐酸羟胺处理布,在聚合物中加入脒肟基团。布的天然多孔结构为脒肟创造了许多微小的口袋,使其可以嵌套在其中,从而轻松捕获铀离子。在实验中,研究人员将涂层布作为阴极放入天然海水或加铀的海水中,再加上一个石墨阳极,并在电极之间运行循环电流,随着时间的推移,阴极布上积累了亮黄色的铀基沉淀物。在使用从渤海收集的海水进行的测试中,每克涂层活性材料在 24 天内提取了 12.6 毫克铀。涂层材料的提取能力高于研究小组测试的大多数其他铀提取材料。此外,使用电化学方法捕获离子的速度比让离子在布上自然积聚的速度快三倍左右。研究人员说,这项工作提供了一种从海水中捕获铀的有效方法,这可能会使海洋成为新的核燃料供应地。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人