3.2千兆像素相机将对南天进行为期十年的扫描

3.2千兆像素相机将对南天进行为期十年的扫描 这台开创性的设备是有史以来用于天文观测的最大数码相机,是目前正在智利阿塔卡马沙漠建设的维拉-C-鲁宾天文台的主要组成部分。该天文台位于海拔 2663 米的高空,建成后将对天空进行仔细观察,旨在拍摄出华盛顿大学教授泽利科-伊维兹奇(Zeljko Ivezic)所说的"有史以来最伟大的影像"。LSST 项目是一项为期 10 年的观测计划,旨在绘制有史以来最全面的夜空地图。一旦安装完毕,相机将利用其 5.1 英尺宽的巨大光学镜头,每 20 秒钟拍摄一次 15 秒钟的南天曝光。这台照相机能够观测从近紫外到近红外的各种波长的天空,将生成宇宙的"延时"图像,每晚产生大约 15 TB 的数据。在整个 LSST 勘测期间,累积的数字数据将达到惊人的 60 PB。据拉加天文台称,LSST 勘测旨在"极大地推进"我们目前对宇宙的了解。维拉-鲁宾天文台(Vera Rubin Observatory)的照相机将协助科学家研究约占宇宙 27% 的暗物质,并将"非常详细地"绘制出暗能量如何影响宇宙膨胀的地图。通过 LSST 收集到的数据将为了解宇宙的构成提供新的视角,对普通物质(约占宇宙的 5%)和目前我们无法探测到的其余成分(暗物质、暗能量)进行研究。LSST 将对我们附近的宇宙(太阳系、银河系)和仍未确定的遥远瞬变事件进行详细观测。作为一个地基观测项目,LSST 勘测将不得不面对地球大气层中出现的越来越多的卫星星座问题。研究人员预计,卫星很可能会造成"严重干扰",其数量和亮度的增加可能会对该项目产生更大的负面影响。 ... PC版: 手机版:

相关推荐

封面图片

历经20年 天文学领域最大的数码相机终于竣工了

历经20年 天文学领域最大的数码相机终于竣工了 研究人员正在检查 LSST 相机。这台相机将很快被运往智利,成为维拉-C-鲁宾天文台(右)的核心部分。资料来源:格雷格-斯图尔特/SLAC 国家加速器实验室作为能源部和美国国家科学基金会资助的维拉-C-鲁宾天文台(Vera C. Rubin Observatory)的核心设备,这台 3200 万像素的相机将帮助研究人员以前所未有的细节观测我们的宇宙。在十年的时间里,它将产生大量关于南半球夜空的数据,研究人员将通过挖掘这些数据来获得对宇宙的新认识。这些数据将有助于研究人员了解推动宇宙加速膨胀的暗能量,以及寻找占宇宙物质 85% 左右的神秘物质暗物质。研究人员还计划利用鲁宾数据更好地了解不断变化的夜空、银河系和我们自己的太阳系。鲁宾天文台建设主任、华盛顿大学教授泽利科-伊维茨奇(Željko Ivezić)说:"随着独一无二的LSST 照相机在 SLAC 完成并即将与智利鲁宾天文台的其他系统集成,我们将很快开始制作有史以来最伟大的影像和信息量最大的夜空地图。"为了实现这一目标,SLAC 团队及其合作伙伴建造了有史以来最大的天文数码相机。这台相机大约有一辆小汽车那么大,重约 3000 公斤(3 公吨),其前镜头的宽度超过 5 英尺,是迄今为止为此目的制造的最大镜头。另一个三英尺宽的镜头必须经过特殊设计,以保持形状和光学清晰度,同时还要密封容纳相机巨大焦平面的真空室。焦平面由 201 个定制设计的 CCD 传感器组成,它非常平整,变化幅度不超过头发丝宽度的十分之一。像素本身只有 10 微米宽。LSST 相机建于 SLAC 国家加速器实验室,是有史以来最大的天文数码相机。该相机是维拉-C-鲁宾天文台为期 10 年的时空遗产巡天(LSST)的核心设备,它将每 3 个夜晚拍摄整个南部天空。该相机的数据将有助于解决宇宙学中一些最紧迫的问题,如暗能量和暗物质的性质,以及推进对太阳系和不断变化的夜空的研究。图片来源:Olivier Bonin/SLAC 国家加速器实验室SLAC教授、鲁宾天文台副主任兼照相机项目负责人亚伦-鲁德曼(Aaron Roodman)说,这台照相机最重要的特点还是它的分辨率,它的分辨率非常高,需要数百台超高清电视才能全尺寸显示它的一幅图像。"它的图像非常细腻,可以分辨出 15 英里外的一个高尔夫球,同时覆盖的天空范围比满月还要宽七倍。这些包含数十亿颗恒星和星系的图像将有助于揭开宇宙的秘密"。能源部宇宙前沿计划项目经理凯西-特纳(Kathy Turner)说,揭示这些秘密越来越重要。特纳说:"与以往任何时候相比,要想扩大我们对基础物理学的理解,就必须把目光投向更远的宇宙。以 LSST 相机为核心,鲁宾天文台将比以往任何时候都更深入地探索宇宙,帮助回答当今物理学中一些最难、最重要的问题。"现在,LSST 照相机已经完工,并在 SLAC 经过了全面测试,它将被打包运往智利,并被送上安第斯山脉 8900 英尺高的 Cerro Pachón,今年晚些时候将被吊装到西蒙尼巡天望远镜上。一旦开始运行,照相机的主要用途就是绘制大量夜空天体的位置图并测量其亮度。研究人员可以从该星表中推断出大量信息。也许最值得注意的是,LSST 相机将寻找弱引力透镜的迹象,在这种情况下,大质量星系会微妙地弯曲背景星系的光线到达我们的路径。弱透镜揭示了宇宙中质量分布的一些情况,以及随着时间的推移质量是如何变化的,这将有助于宇宙学家了解暗能量是如何推动宇宙膨胀的。SLAC 高级工程师兼 LSST 相机项目经理马丁-诺德比(Martin Nordby)说,该天文台是第一个为研究如此规模的弱透镜而建造的天文台,该项目促使科学家和工程师们开发了许多新技术,包括新型 CCD 传感器和一些有史以来最大的透镜,并确保所有这些组件都能很好地协同工作。艺术家绘制的 LSST 相机效果图,显示了其主要组件,包括镜头、传感器阵列和工具箱。资料来源:Chris Smith/SLAC 国家加速器实验室科学家们还希望研究星系分布的模式以及这些模式随着时间的推移而发生的变化,识别暗物质群和发现超新星,所有这些都有助于进一步了解暗物质和暗能量。这么大的相机还能做什么?揭示遥远星系细节的相同图像将帮助研究人员研究离家更近的东西:我们自己的银河系。银河系中的许多恒星又小又暗,但借助 LSST 相机的灵敏度,研究人员有望绘制出银河系更为详细的地图,从而深入了解银河系的结构和演变,以及其中恒星和其他天体的性质。在离地球更近的地方,研究人员希望对太阳系中的许多小天体进行更彻底的普查。根据鲁宾天文台的估计,该项目可能会使已知天体的数量增加 10 倍,这可能会让人们对太阳系的形成过程有新的认识,或许还有助于识别那些过于接近地球的小行星所带来的威胁。这台相机将安装在鲁宾天文台的西蒙尼巡天望远镜上,该望远镜位于智利安第斯山脉的高处。资料来源:鲁宾天文台/美国国家科学基金会/AURA最后,鲁宾科学家将研究夜空是如何变化的例如,恒星是如何死亡的,或者物质是如何落入星系中心的超大质量黑洞的。SLAC 主任约翰-萨拉奥(John Sarrao)说,这台相机是实验室及其合作伙伴的一项"巨大成就"。LSST相机和鲁宾天文台将为我们的宇宙打开一扇新窗口,让我们深入了解宇宙中一些最神秘的事物,同时揭示离我们更近的奇迹。"看到拉加中心的科技专长、项目领导力和强大的全球合作伙伴关系以如此具有影响力的方式汇聚在一起,我感到非常兴奋。我们迫不及待地想看到下一步的发展。"提供专业知识和技术的合作实验室包括:布鲁克海文国家实验室(Brookhaven National Laboratory),该实验室制造了相机的数字传感器阵列;劳伦斯-利弗莫尔国家实验室(Lawrence Livermore National Laboratory),该实验室与其工业合作伙伴一起设计和制造了相机的镜头;法国国家科学研究中心(IN2P3/CNRS)的国家核与粒子物理研究所(National Institute of Nuclear and Particle Physics at the National Center for Scientific Research),该研究所参与了传感器和电子设备的设计,并制造了相机的滤光片交换系统,该系统将使相机能够捕捉从紫外线到红外线的六个不同波段的光。已完工的 LSST 相机正面图,显示其中的 3200 万像素焦平面。图片来源:Jacqueline Ramseyer Orrell/SLAC 国家加速器实验室布鲁克海文实验室仪器部高级物理学家保罗-奥康纳(Paul O'Connor)说:"布鲁克海文实验室的团队(其中一些人已经为该项目工作了 20 多年)非常高兴地看到 LSST 相机的完工。我们与多个合作者共同开发的快速、超灵敏 CCD 模块将为鲁宾天文台未来十年的突破性科学研究做出贡献,我们期待着在这一旗舰天文巡天项目中开展合作。"照相机光学组件的一个主要特征是它的三个透镜,其中一个直径为 1.57 米(5.1 英尺)的透镜据信是迄今为止制造的世界上最大的高性能光学透镜。劳伦斯利弗莫尔国家实验室的工程师、前 LSST 相机项目经理 Vincent Riot 说:"劳伦斯利弗莫尔国家实验室非常荣幸能有机会为 LSST 相机设计并监督大型透镜和光学过滤器的制造,其中包括世界上最大的透镜。LLNL 能够利用其几十年来开发世界上最大激光系统所积累的大型光学技术专长,看到这个前所未有的仪器完工并准备前往鲁宾天文台,我们感到非常兴奋。"IN2P3/CNRS 相机科学家皮埃尔-安蒂洛格斯(Pierre Antilogus)说:"为了制作宇宙三维电影,相机必须在大约 2 秒钟内拍摄图像,并在 90 秒钟内更换滤镜。对于如此大小的相机来说,这是一项了不起的壮举。如果说 LSST 相机焦平面的... PC版: 手机版:

封面图片

新型40万像素超导相机提供前所未有的宇宙视野

新型40万像素超导相机提供前所未有的宇宙视野 一直以来,超导照相机虽然能满足低噪声和高灵敏度的要求,但受限于其体积小,通常不超过几千个像素,这限制了其捕捉高分辨率图像的能力。然而,一个研究小组最近的一项突破打破了这一障碍,制造出了一台拥有 40 万像素的超导照相机。这一进步使我们能够探测从紫外线到红外线波长的宽光谱微弱天文信号。基于超导纳米线单光子探测器的 40 万像素超导相机。资料来源:Adam McCaughan/NIST虽然有很多其他的照相机技术,但使用超导探测器的照相机因其极低的工作噪声而非常适合在天文任务中使用。在对微弱光源成像时,照相机必须如实报告接收到的光量,而不能歪曲接收到的光量或注入自己的错误信号。超导探测器由于其低温运行和独特的成分,完全可以胜任这一任务。正如项目负责人亚当-麦考恩博士所描述的,"有了这些探测器,你可以整天采集数据,捕捉数十亿个光子,而其中只有不到十个光子是噪声造成的"。NIST 团队成员 Bakhrom Oripov(左)和 Ryan Morgenstern(右)将超导相机安装到专用低温平台上。资料来源:Adam McCaughan/NIST不过,虽然超导探测器在天文应用方面大有可为,但由于相机尺寸小,像素相对较少,它们在该领域的应用一直受到阻碍。由于这些探测器的灵敏度非常高,因此很难在小范围内安装大量的探测器而不相互干扰。此外,由于这些探测器需要在低温冰箱中保持低温,因此只能用少量的导线将信号从照相机传送到温度较高的读出电子装置。为了克服这些限制,美国国家标准与技术研究院(NIST)、美国国家航空航天局喷气推进实验室(JPL)和科罗拉多大学博尔德分校的研究人员将时域多路复用技术应用于二维超导纳米线单光子探测器(SNSPD)阵列的检测。单个 SNSPD 纳米线排列成相交的行和列。当光子到达时,测量触发行探测器和列探测器所需的时间,以确定是哪个像素发出的信号。通过这种方法,相机只需在几根读出导线上对许多行和列进行有效编码,而无需数千根导线。这幅动画描述了新开发的读出系统,该系统使研究人员有可能制造出一台 40 万像素的单线超导照相机,这是同类照相机中分辨率最高的照相机。资料来源:S. Kelley/NISTSNSPD 是众多此类超导探测器技术中的一种,包括微波动感探测器 (MKID)、过渡边传感器 (TES) 和量子电容探测器 (QCD)。SNSPD 的独特之处在于其工作温度远高于其他技术所需的毫开尔文温度,并且具有极高的时间分辨率,但无法分辨单个光子的颜色。近二十年来,NIST、JPL 和其他机构一直在合作研究 SNSPD,而最近的这项工作之所以能够完成,完全得益于更广泛的超导探测器领域所取得的进步。研究小组采用了这种读出架构后,他们发现立即就可以建造像素数量极多的超导相机。正如技术带头人巴赫罗姆-奥里波夫博士所描述的那样:"这里最大的进步在于探测器是真正独立的,因此如果你想要像素更高的相机,只需在芯片上增加更多的探测器即可。研究人员指出,虽然他们最近的项目是一个 40 万像素的设备,但他们还即将展示一个像素超过 100 万的设备,目前还没有找到上限。"JPL 小组成员与两个低温冷却器原型,它们将用于测试远紫外波长的超导照相机。从左到右依次为:Emanuel Knehr、Boris Korzh、Jason Allmaras 和 Andrew Beyer。资料来源:Boris Korzh/NASA JPL研究人员认为,他们的相机最令人兴奋的用途之一是在太阳系外寻找类地行星。为了成功探测到这些行星,未来的太空望远镜将观测遥远的恒星,寻找来自轨道行星的微小反射光或发射光。探测和分析这些信号极具挑战性,需要长时间曝光,这意味着望远镜收集到的每一个光子都非常宝贵。一台可靠的低噪声照相机对于探测这些数量极少的光至关重要。SNSPD 摄像机还可用于探测来自深空任务的光通信信号。事实上,美国国家航空航天局(NASA)目前正在通过深空光通信(DSOC)项目演示这种能力,这是首次演示来自行星际空间的自由空间光通信。DSOC 正在从一个名为"Psyche"的航天器(已于 10 月 13 日发射升空,正在前往 Psyche 小行星的途中)向位于帕洛玛天文台的一个基于 SNSPD 的地面终端发送数据。光学链路的数据传输速率远远高于星际间的射频链路。为接收 Psyche 数据的地面站开发的照相机具有出色的定时分辨率,可以对来自航天器的光学数据进行解码,从而在一定时间内接收到比使用无线电信号多得多的数据。这些传感器还将在地球上的许多应用中发挥作用。由于这种相机的工作波长非常灵活,因此可以优化其在生物医学成像方面的应用,以探测以前无法探测到的细胞和分子发出的微弱信号。麦考恩博士指出:"我们非常希望神经科学家能够使用这种相机。这项技术可以为他们提供一种新的工具,以完全非侵入性的方式研究我们的大脑"。最后,迅速发展的量子技术领域也将从这一令人兴奋的技术中获益,它有望改变我们确保通信和交易安全的方式,以及我们模拟和优化复杂过程的方式。一个光子可用于传输或计算一个比特的量子信息。目前,许多公司和政府都在努力扩大量子计算机和通信链路的规模,而获得如此易于扩展的单光子照相机可以克服释放量子技术全部潜力的主要障碍之一。据研究小组称,下一步将是利用这一初步演示,并对其进行优化,使其适用于太空应用。共同项目负责人鲍里斯-科尔日(Boris Korzh)博士说:"现在,我们已经进行了概念验证演示,但我们还需要对其进行优化,以充分展示其潜力。研究团队目前正在计划进行超高效率照相机演示,以验证这项新技术在紫外线和红外线方面的实用性。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

目前最大数码相机,透镜直径为1.57米!

目前最大数码相机,透镜直径为1.57米! 世界上最大的天文数码相机在美国能源部下属斯坦福直线加速器(SLAC)国家加速器实验室亮相!据英国《新科学家》网站近日报道,这款相机高1.65米,比汽车还高,拥有32亿像素。在未来十年内,它将帮助科学家研究数十亿星系,以更好地揭示暗物质的本质。 这款名为“LSST Camera”的相机将于2024年底被安装在位于智利塞罗·帕松山顶的薇拉·库珀·鲁宾天文台上,并在未来十年对大约200亿个星系进行拍摄编目。该数码相机拥有32亿像素,可以拍摄出分辨率极高的图像足以看到月球上的尘埃颗粒。 来自:雷锋 频道:@kejiqu 群组:@kejiquchat 投稿:@kejiqubot

封面图片

黑洞与黑暗的启示引力波提供暗物质构成的新线索

黑洞与黑暗的启示引力波提供暗物质构成的新线索 从地球向大麦哲伦云观测到的黑洞引起的微透镜事件的艺术家印象图。位于大麦哲伦云的一颗背景恒星的光线被银河系光晕中的一个推定原始黑洞(透镜)弯曲,从地球上观测时被放大。微透镜导致背景恒星的亮度发生极具特征性的变化,从而可以确定透镜的质量和距离。图片来源:J. Skowron / OGLE。大麦哲伦云的背景图像:由 Kevin Loch 使用 ESA/Gaia 数据库编写的 bsrender 生成。图片来源:J. Skowron / OGLE。大麦哲伦云的背景图片:由 Kevin Loch 使用 ESA/Gaia 数据库编写的 bsrender 生成。研究结果发表在《自然》 和《 天体物理学杂志增刊系列》上的两篇文章中 。这项研究是由华沙大学天文台 OGLE(光学引力透镜实验)调查的科学家进行的。各种天文观测表明,我们可以看到或触摸到的普通物质只占宇宙总质量和总能量的 5%。在银河系中,恒星中每一磅普通物质就对应 15 磅"暗物质",它们不发射任何光,只通过引力相互作用。"暗物质的本质仍然是一个谜。大多数科学家认为它是由未知的基本粒子组成的,"两篇文章的第一作者、华沙大学天文台的 Przemek Mróz 博士说。"不幸的是,尽管经过数十年的努力,但没有任何实验(包括利用大型强子对撞机进行的实验)发现可能是暗物质的新粒子"。通过银河系光环看到的大质量天体对大麦哲伦云的预期微透镜事件与观测到的微透镜事件的对比。如果宇宙中的暗物质由推定的原始黑洞组成,那么在 2001-2020 年的 OGLE 勘测中将会探测到 500 多个微透镜事件。而实际上,OGLE项目只探测到了13次微光事件,很可能是由普通恒星引起的。图片来源:J. Skowron / OGLE。大麦哲伦云背景图片:由 Kevin Loch 使用 ESA/Gaia 数据库编写的 bsrender 生成。图片来源:J. Skowron / OGLE。大麦哲伦云的背景图片:由 Kevin Loch 使用 ESA/Gaia 数据库编写的 bsrender 生成。原始黑洞的奥秘和潜力自 2015 年首次探测到一对黑洞合并产生的引力波以来,LIGO和室女座实验已经探测到 90 多个此类事件。天文学家注意到,LIGO 和室女座探测到的黑洞质量(20-100 个太阳质量)通常比银河系中已知的黑洞质量(5-20 个太阳质量)大得多。Mróz 博士说:"解释为什么这两个黑洞群如此不同,是现代天文学最大的谜团之一。"一种可能的解释是,LIGO 和室女座探测器发现了可能在宇宙早期形成的原始黑洞群。50 多年前,英国著名理论物理学家斯蒂芬-霍金(Stephen Hawking)首次提出了原始黑洞的存在,苏联物理学家雅科夫-泽尔多维奇(Yakov Zeldovich)也独立提出了这一观点。"我们知道,早期宇宙并不是理想的均质宇宙微小的密度波动产生了现在的星系和星系团,"Mróz 博士说。"类似的密度波动如果超过临界密度对比,就可能坍缩并形成黑洞。"自从首次探测到引力波以来,越来越多的科学家猜测,这种原始黑洞可能构成暗物质的重要部分,如果不是全部的话。大麦哲伦云被银河系光环中的大质量天体透镜化的艺术印象。图片来源:J. Skowron / OGLE利用微透镜技术探索暗物质幸运的是,这一假设可以通过天文观测得到验证。我们观测到银河系中存在大量暗物质。如果它是由黑洞组成的,我们就应该能够在我们的宇宙邻域中探测到它们。鉴于黑洞不会发出任何可探测到的光,这可能吗?根据爱因斯坦的广义相对论,光线可能会在大质量天体的引力场中发生弯曲和偏转,这种现象被称为引力微透镜。"当三个物体地球上的观测者、光源和透镜在太空中几乎理想地对齐时,就会发生微透镜现象,"OGLE 勘测的首席研究员 Andrzej Udalski 教授说。"在微透镜事件中,光源的光线可能会发生偏转和放大,我们观测到光源的光线会暂时变亮。"变亮的持续时间取决于透镜天体的质量:质量越大,时间越长。太阳质量天体的微透镜事件通常会持续数周,而质量比太阳大 100 倍的黑洞的微透镜事件则会持续数年。利用引力微透镜研究暗物质的想法并不新鲜。20 世纪 80 年代,波兰著名天体物理学家博赫丹-帕钦斯基首次提出了这一想法。他的想法激发了三大实验的启动:波兰的 OGLE、美国的 MACHO 和法国的 EROS。这些实验的首批结果表明,质量小于一个太阳质量的黑洞可能只占暗物质的不到10%。不过,这些观测对时间尺度极长的微透镜事件并不敏感,因此对大质量黑洞也不敏感,类似于最近用引力波探测器探测到的那些黑洞。智利拉斯坎帕纳斯天文台(由卡内基科学研究所运营)夜景。OGLE 项目观测站以及大麦哲伦云和小麦哲伦云。图片来源:Krzysztof UlaczykOGLE 的长期观察研究在《天体物理学杂志增刊系列》(Astrophysical Journal Supplement Series)的这篇新文章中,OGLE天文学家介绍了对位于附近一个名为大麦哲伦云的星系中的近8000万颗恒星进行的长达近20年的光度监测结果,以及对引力微透镜事件的搜索。所分析的数据是在2001年至2020年OGLE项目的第三和第四阶段收集的。Udalski 教授说:"这组数据提供了现代天文学史上对大麦哲伦云中恒星进行的时间最长、规模最大、最精确的测光观测。"第二篇文章发表在《自然》杂志上,讨论了这一发现的天体物理学后果。Mróz博士说:"如果银河系中的所有暗物质都是由10个太阳质量的黑洞组成,那么我们本应探测到258个微透镜事件。对于 100 个太阳质量的黑洞,我们预计会有 99 个微透镜事件。1000个太阳质量的黑洞27个微透镜事件。"相比之下,OGLE 天文学家只发现了 13 个微透镜事件。他们的详细分析表明,所有这些事件都可以用银河系或大麦哲伦云本身的已知恒星群来解释,而不是用黑洞来解释。Mróz博士说:"这表明大质量黑洞最多只能构成暗物质的百分之几。"详细计算表明,10 个太阳质量的黑洞可能最多占暗物质的 1.2%,100 个太阳质量的黑洞占暗物质的 3.0%,1000 个太阳质量的黑洞占暗物质的 11%。Udalski 教授说:"我们的观测结果表明,原始黑洞不可能占暗物质的很大一部分,同时也能解释 LIGO 和室女座观测到的黑洞合并率。"因此,LIGO 和室女座探测到的大质量黑洞需要其他解释。根据一种假设,它们是大质量、低金属度恒星演化的产物。另一种可能是,在球状星团等高密度恒星环境中,质量较小的天体发生了合并。Udalski 教授补充说:"我们的研究成果在未来几十年内都会出现在天文学教科书中。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

人工智能在突破性研究中推断出暗能量的影响和特性

人工智能在突破性研究中推断出暗能量的影响和特性 暗能量是加速宇宙膨胀的神秘力量,被认为占宇宙内容的70%左右(暗物质是看不见的东西,它的引力牵引着星系,占25%,正常物质只占5%)。主要作者尼尔-杰弗里(Niall Jeffrey)博士(UCL 物理与天文学)说:"利用人工智能从计算机模拟的宇宙中学习,我们对宇宙关键属性的估计精度提高了两倍。如果没有这些新技术,要实现这一改进,我们需要四倍的数据量。这相当于再绘制3亿个星系的地图"。共同作者洛恩-怀特威博士(伦敦大学物理与天文学学院)说:"我们的发现符合目前对暗能量的最佳预测,即暗能量是一个'宇宙常数',其值不会随空间或时间而变化。不过,它们也为正确的不同解释留出了灵活性。例如,我们的引力理论仍然可能是错误的。"从其中一个模拟宇宙中得到的物质地图。图中最亮的区域表示暗物质密度最高的区域。这些区域与超星系团相对应。深色的几乎是黑色的斑块是宇宙空洞,即星系团之间的大片空隙。资料来源:尼尔-杰弗里等人完善宇宙学模型与之前于2021年首次发表的暗能量勘测图分析结果一致,这些研究结果表明,宇宙中的物质比爱因斯坦广义相对论所预测的分布得更平滑更少有块状的情况。不过,与之前的分析相比,这项研究的差异并不那么显著,因为误差条更大。暗能量勘测图是通过一种叫做弱引力透镜的方法获得的,即观察来自遥远星系的光线在到达地球的途中是如何被干扰物质的引力弯曲的。这项合作分析了 1 亿个星系形状的扭曲,从而推断出这些星系前景中所有物质(包括暗物质和可见物质)的分布情况。由此绘制的地图覆盖了南半球四分之一的天空。在这项新研究中,研究人员利用英国政府资助的超级计算机,根据暗能量调查物质地图的数据,对不同的宇宙进行了模拟。每个模拟都有不同的宇宙数学模型作为基础。研究人员从这些模拟中创建了物质图谱。一个机器学习模型被用来提取这些地图中与宇宙学模型相关的信息。第二个机器学习工具从许多不同宇宙学模型的模拟宇宙实例中学习,查看真实观测数据,并给出任何宇宙学模型成为我们宇宙真实模型的几率。与以前的方法相比,这项新技术使研究人员能够使用更多的地图信息。模拟在 DiRAC 高性能计算(HPC)设施上运行,该设施由英国科技设施委员会(STFC)资助。宇宙学的未来探索下一阶段的暗宇宙项目包括去年夏天启动的欧洲航天局(ESA)欧几里得(Euclid)任务将大大增加我们所掌握的有关宇宙大尺度结构的数据量,帮助研究人员确定宇宙出人意料的平滑是否是当前宇宙学模型错误的标志,或者是否有其他解释。目前,这种平滑性与根据宇宙微波背景(CMB)宇宙大爆炸时留下的光线分析得出的预测结果不符。暗能量勘测合作项目由美国能源部费米国家加速器实验室(Fermilab)主办,来自七个国家 25 个机构的 400 多名科学家参与其中。该合作项目利用世界上功能最强大的数码相机之一5.7亿像素暗能量相机(Dark Energy Camera)在六年时间里(从2013年到2019年)拍摄的夜空照片,对数以亿计的星系进行了编目。该相机的光学校正器由 UCL 制造,安装在智利国家科学基金会 Cerro Tololo 美洲天文台的望远镜上。编译自:ScitechDaily ... PC版: 手机版:

封面图片

韦伯太空望远镜发现神秘的大质量远古星系JWST-7329

韦伯太空望远镜发现神秘的大质量远古星系JWST-7329 JWST-7329:一个罕见的大质量星系,形成于宇宙早期。这张詹姆斯-韦伯太空望远镜NIRCAM图像显示了一个红色圆盘星系,但仅凭图像很难将它与其他天体区分开来。利用 JWST 对其光线进行的光谱分析揭示了它的反常性质它形成于大约 130 亿年前,尽管它所包含的恒星质量是我们今天银河系的 4 倍。图片来源:詹姆斯-韦伯太空望远镜结果发现,在110多亿年的宇宙早期就已经出现了大质量星系(宇宙红移为 3.2),而其形成时间更是要再早15亿年(红移约为 11)以上,这一观测结果颠覆了目前的建模,因为暗物质还没有积累到足够的浓度来为恒星的形成提供种子。斯威本科技大学特聘教授卡尔-格莱兹布鲁克(Karl Glazebrook)领导了这项研究,并带领国际团队利用 JWST 对这个大质量静止星系进行了光谱观测。"我们追逐这个特殊的星系已经七年了,我们用地球上最大的两台望远镜观察了它好几个小时,想知道它的年龄有多大。但它太红、太暗,我们无法测量。最后,我们不得不离开地球,用JWST来确认它的性质。"美国国家航空航天局(NASA)的詹姆斯-韦伯太空望远镜是哈勃太空望远镜的后继者,也是有史以来送入太空的最强大的红外科学观测站。在距离地球近一百万英里的轨道上,韦伯研究宇宙中一些最遥远的天体。资料来源:美国国家航空航天局星系的形成是现代天体物理学的一个基本范式,它预示着观察到大质量星系的数量会在宇宙早期急剧下降。现在,早在宇宙大爆炸后的 10 到 20 亿年,就已经观测到了质量极大的静态星系,这对以前的理论模型提出了挑战。格拉兹布鲁克特聘教授与世界各地的顶尖研究人员合作,其中包括 Themiya Nanayakkara 博士、Lalitwadee Kawinwanichakij 博士、Colin Jacobs 博士、Harry Chittenden 博士、Glenn G Kacprzak 副教授以及斯威本天体物理学和超级计算中心的 Ivo Labbe 副教授。"这在很大程度上是一个团队的努力,从我们在2010年开始的红外巡天,导致我们确定这个星系是不寻常的,到我们在凯克和甚大望远镜上花了很多时间尝试,但都未能确认它,直到最后一年,我们花了巨大的精力来弄清楚如何处理JWST的数据并分析这个光谱。"Themiya Nanayakkara博士领导了对JWST数据的光谱分析,他说:"我们现在超越了过去的可能,确认了宇宙深处存在的最古老的大质量静态怪兽。这突破了我们目前对星系如何形成和演化的理解界限。现在的关键问题是,它们如何在宇宙早期如此快速地形成,以及是什么神秘机制导致它们在宇宙其他部分形成恒星时突然停止形成恒星?"国际射电天文研究中心(ICRAR)西澳大利亚大学节点的克劳迪娅-拉戈斯(Claudia Lagos)副教授在为这项研究建立暗物质浓度演变理论模型方面发挥了关键作用。她说:"星系的形成在很大程度上取决于暗物质的聚集方式。在宇宙中如此之早出现这些质量极大的星系,对我们的宇宙学标准模型提出了重大挑战。这是因为我们认为,承载这些大质量星系的大质量暗物质结构还没有来得及形成。我们需要进行更多的观测,以了解这些星系可能有多常见,并帮助我们了解这些星系的真正质量有多大"。格拉兹布鲁克特聘教授希望这能为我们了解暗物质物理学打开一个新的局面。"JWST已经发现越来越多的证据,证明大质量星系形成的时间较早。这一结果创下了这一现象的新纪录。虽然它非常引人注目,但这只是一个天体。但我们希望能找到更多,如果真的找到了,这将真正颠覆我们对星系形成的看法。"编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人