黑洞与黑暗的启示引力波提供暗物质构成的新线索

黑洞与黑暗的启示引力波提供暗物质构成的新线索 从地球向大麦哲伦云观测到的黑洞引起的微透镜事件的艺术家印象图。位于大麦哲伦云的一颗背景恒星的光线被银河系光晕中的一个推定原始黑洞(透镜)弯曲,从地球上观测时被放大。微透镜导致背景恒星的亮度发生极具特征性的变化,从而可以确定透镜的质量和距离。图片来源:J. Skowron / OGLE。大麦哲伦云的背景图像:由 Kevin Loch 使用 ESA/Gaia 数据库编写的 bsrender 生成。图片来源:J. Skowron / OGLE。大麦哲伦云的背景图片:由 Kevin Loch 使用 ESA/Gaia 数据库编写的 bsrender 生成。研究结果发表在《自然》 和《 天体物理学杂志增刊系列》上的两篇文章中 。这项研究是由华沙大学天文台 OGLE(光学引力透镜实验)调查的科学家进行的。各种天文观测表明,我们可以看到或触摸到的普通物质只占宇宙总质量和总能量的 5%。在银河系中,恒星中每一磅普通物质就对应 15 磅"暗物质",它们不发射任何光,只通过引力相互作用。"暗物质的本质仍然是一个谜。大多数科学家认为它是由未知的基本粒子组成的,"两篇文章的第一作者、华沙大学天文台的 Przemek Mróz 博士说。"不幸的是,尽管经过数十年的努力,但没有任何实验(包括利用大型强子对撞机进行的实验)发现可能是暗物质的新粒子"。通过银河系光环看到的大质量天体对大麦哲伦云的预期微透镜事件与观测到的微透镜事件的对比。如果宇宙中的暗物质由推定的原始黑洞组成,那么在 2001-2020 年的 OGLE 勘测中将会探测到 500 多个微透镜事件。而实际上,OGLE项目只探测到了13次微光事件,很可能是由普通恒星引起的。图片来源:J. Skowron / OGLE。大麦哲伦云背景图片:由 Kevin Loch 使用 ESA/Gaia 数据库编写的 bsrender 生成。图片来源:J. Skowron / OGLE。大麦哲伦云的背景图片:由 Kevin Loch 使用 ESA/Gaia 数据库编写的 bsrender 生成。原始黑洞的奥秘和潜力自 2015 年首次探测到一对黑洞合并产生的引力波以来,LIGO和室女座实验已经探测到 90 多个此类事件。天文学家注意到,LIGO 和室女座探测到的黑洞质量(20-100 个太阳质量)通常比银河系中已知的黑洞质量(5-20 个太阳质量)大得多。Mróz 博士说:"解释为什么这两个黑洞群如此不同,是现代天文学最大的谜团之一。"一种可能的解释是,LIGO 和室女座探测器发现了可能在宇宙早期形成的原始黑洞群。50 多年前,英国著名理论物理学家斯蒂芬-霍金(Stephen Hawking)首次提出了原始黑洞的存在,苏联物理学家雅科夫-泽尔多维奇(Yakov Zeldovich)也独立提出了这一观点。"我们知道,早期宇宙并不是理想的均质宇宙微小的密度波动产生了现在的星系和星系团,"Mróz 博士说。"类似的密度波动如果超过临界密度对比,就可能坍缩并形成黑洞。"自从首次探测到引力波以来,越来越多的科学家猜测,这种原始黑洞可能构成暗物质的重要部分,如果不是全部的话。大麦哲伦云被银河系光环中的大质量天体透镜化的艺术印象。图片来源:J. Skowron / OGLE利用微透镜技术探索暗物质幸运的是,这一假设可以通过天文观测得到验证。我们观测到银河系中存在大量暗物质。如果它是由黑洞组成的,我们就应该能够在我们的宇宙邻域中探测到它们。鉴于黑洞不会发出任何可探测到的光,这可能吗?根据爱因斯坦的广义相对论,光线可能会在大质量天体的引力场中发生弯曲和偏转,这种现象被称为引力微透镜。"当三个物体地球上的观测者、光源和透镜在太空中几乎理想地对齐时,就会发生微透镜现象,"OGLE 勘测的首席研究员 Andrzej Udalski 教授说。"在微透镜事件中,光源的光线可能会发生偏转和放大,我们观测到光源的光线会暂时变亮。"变亮的持续时间取决于透镜天体的质量:质量越大,时间越长。太阳质量天体的微透镜事件通常会持续数周,而质量比太阳大 100 倍的黑洞的微透镜事件则会持续数年。利用引力微透镜研究暗物质的想法并不新鲜。20 世纪 80 年代,波兰著名天体物理学家博赫丹-帕钦斯基首次提出了这一想法。他的想法激发了三大实验的启动:波兰的 OGLE、美国的 MACHO 和法国的 EROS。这些实验的首批结果表明,质量小于一个太阳质量的黑洞可能只占暗物质的不到10%。不过,这些观测对时间尺度极长的微透镜事件并不敏感,因此对大质量黑洞也不敏感,类似于最近用引力波探测器探测到的那些黑洞。智利拉斯坎帕纳斯天文台(由卡内基科学研究所运营)夜景。OGLE 项目观测站以及大麦哲伦云和小麦哲伦云。图片来源:Krzysztof UlaczykOGLE 的长期观察研究在《天体物理学杂志增刊系列》(Astrophysical Journal Supplement Series)的这篇新文章中,OGLE天文学家介绍了对位于附近一个名为大麦哲伦云的星系中的近8000万颗恒星进行的长达近20年的光度监测结果,以及对引力微透镜事件的搜索。所分析的数据是在2001年至2020年OGLE项目的第三和第四阶段收集的。Udalski 教授说:"这组数据提供了现代天文学史上对大麦哲伦云中恒星进行的时间最长、规模最大、最精确的测光观测。"第二篇文章发表在《自然》杂志上,讨论了这一发现的天体物理学后果。Mróz博士说:"如果银河系中的所有暗物质都是由10个太阳质量的黑洞组成,那么我们本应探测到258个微透镜事件。对于 100 个太阳质量的黑洞,我们预计会有 99 个微透镜事件。1000个太阳质量的黑洞27个微透镜事件。"相比之下,OGLE 天文学家只发现了 13 个微透镜事件。他们的详细分析表明,所有这些事件都可以用银河系或大麦哲伦云本身的已知恒星群来解释,而不是用黑洞来解释。Mróz博士说:"这表明大质量黑洞最多只能构成暗物质的百分之几。"详细计算表明,10 个太阳质量的黑洞可能最多占暗物质的 1.2%,100 个太阳质量的黑洞占暗物质的 3.0%,1000 个太阳质量的黑洞占暗物质的 11%。Udalski 教授说:"我们的观测结果表明,原始黑洞不可能占暗物质的很大一部分,同时也能解释 LIGO 和室女座观测到的黑洞合并率。"因此,LIGO 和室女座探测到的大质量黑洞需要其他解释。根据一种假设,它们是大质量、低金属度恒星演化的产物。另一种可能是,在球状星团等高密度恒星环境中,质量较小的天体发生了合并。Udalski 教授补充说:"我们的研究成果在未来几十年内都会出现在天文学教科书中。"编译来源:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

韦伯望远镜的"红外之眼"以生动的细节揭示黑洞奥秘

韦伯望远镜的"红外之眼"以生动的细节揭示黑洞奥秘 这幅詹姆斯-韦伯太空望远镜拍摄的类星体 RX J1131-1231 的图像突出显示了引力透镜的作用,它放大了类星体,从而可以对其特性和周围的暗物质进行详细研究。X 射线辐射表明黑洞正在快速旋转,很可能是由于星系合并造成的。资料来源:ESA/Webb、NASA & CSA、A. Nierenberg它被认为是迄今为止发现的透镜效果最好的类星体之一,因为前景星系将背景类星体的图像涂抹成了一个明亮的弧形,并形成了该天体的四幅图像。引力透镜最早是由爱因斯坦预测的,它提供了一个难得的机会来研究遥远类星体中靠近黑洞的区域,它就像一个天然望远镜,可以放大这些光源发出的光。宇宙中的所有物质都会扭曲自身周围的空间,质量越大,产生的影响就越大。在质量非常大的天体(如星系)周围,经过附近的光线会沿着这种扭曲的空间移动,看起来会明显偏离原来的轨迹。引力透镜的后果之一是它可以放大遥远的天体,让天文学家研究那些原本过于暗淡或遥远的天体。詹姆斯-韦伯太空望远镜(James Webb Space Telescope)拍摄到了位于 60 亿光年之外的类星体 RX J1131-1231 的图像,展示了引力透镜的效果,将遥远的类星体放大成一个明亮的弧线和多幅图像。图片来源:ESA/Webb、NASA & CSA、A. Nierenberg对类星体发出的 X 射线进行测量,可以显示中心黑洞的旋转速度,这为研究人员提供了有关黑洞如何随时间增长的重要线索。例如,如果黑洞主要是通过星系间的碰撞和合并成长起来的,那么它应该在一个稳定的圆盘中积累物质,而来自圆盘的新物质的稳定供应应该会导致黑洞快速旋转。另一方面,如果黑洞是通过许多小的吸积事件成长起来的,它就会从随机的方向积累物质。观测结果表明,这个特殊类星体中的黑洞旋转速度超过光速的一半,这表明这个黑洞是通过合并而生长的,而不是从不同方向吸积物质。这张照片是用韦伯望远镜的中红外成像仪(MIRI)拍摄的,是暗物质研究观测计划的一部分。暗物质是一种看不见的物质,占宇宙质量的大部分。韦伯望远镜对类星体的观测使天文学家能够以前所未有的小尺度探测暗物质的性质。编译自/ScitechDaily ... PC版: 手机版:

封面图片

中国建成世界最大最深的暗物质实验室

中国建成世界最大最深的暗物质实验室 中国锦屏地下实验室(CJPL)自2010年投运,经过三年修建,中国锦屏地下实验室二期(CJPL-II)于2023年12月投入科学运行。其33万立方米的超大空间超过了之前深度和体积的纪录保持者意大利的格兰萨索国家实验室(LNGS)。更大的空间让粒子和天体物理氙探测实验(PandaX)和中国暗物质实验(CDEX)这类项目可以再次升级。芝加哥大学的物理学家Juan Collar说:“他们在十年内完成的工作令人赞叹。”暗物质一直是科学界的一个谜。物理学家经过计算发现,可见物质产生的引力太弱,无法阻止快速移动的星系飞散。因此,他们提出理论,认为暗物质就像不可见的胶水,把整个宇宙黏在一起。虽然暗物质理应无处不在,但事实证明直接观测到暗物质很难,因为理论上暗物质与普通物质不会相互作用,也不会释放、反射或吸收光。之前有人提出探测到了暗物质,但反驳观点认为,这些实验可能受到了其他信号的混淆。科学荣誉等候着第一个探测到暗物质的人,这也是粒子物理学的最大任务之一,在CDEX合作组工作的台湾中央研究院的物理学家Henry Tsz-King Wong说道。山下之光寻找暗物质的最佳场所是地下,因为岩体能替探测器挡掉背景“噪音”,比如从太空向地球洒落的高能粒子宇宙射线就会淹没潜在的暗物质信号,意大利国家核物理研究院的物理学家Marco Selvi说,想从地球表面探测暗物质就像在一个人声鼎沸的体育场里辨认一个小孩发出的微弱声音。在深地环境下,CJPL-II 的宇宙线通量仅为地表的0.000001%,使其成为世界上屏蔽效果最好的地下实验室之一。实验室的墙体还包裹了由橡胶、混凝土等材料混合而成的10厘米厚的保护结构,能防止周围岩体释放的水和放射性氡气,以免暗物质探测实验受到干扰。实验室的研究团队已经在利用新增的空间了。在CJPL-II施工期间,PandaX团队将其探测器从120公斤液氙升级到4吨。当潜在的暗物质颗粒与氙原子发生碰撞,其能量就会转变成能被光电传感器探测到的闪光。该探测器很快将赶上LNGS的XENONnT实验(8.6吨)以及美国桑福德地下研究所的LUX-ZEPLIN实验(7吨)。PandaX-4T探测器位于一个900立方米的水池中,这是为了能进一步屏蔽杂散粒子的干扰,团队成员、上海交通大学物理学家周宁表示,“灵敏度提升后,我们就能用探测器测试不同类型的相互作用。”该团队最终想要打造一个40-50吨的氙探测器,有望与以40吨为目标的达尔文实验(DARWIN Experiment)相抗衡。与此同时,CDEX团队也在部署一台锗探测器,锗探测器能寻找比氙实验寻找的质量更小的潜在暗物质粒子,CDEX团队成员、北京清华大学物理学家岳骞说。CDEX探测器已经从1公斤锗升级到10公斤锗,并计划打造一个1吨量级的探测器阵列。如果一个暗物质粒子撞到了这个探测器,其相互作用就应产生电荷,这个电荷会转换为电信号。岳骞希望CDEX能吸引更多国际合作,目前已经有印度和土耳其的研究人员加入。Selvi说,虽然各国对暗物质的搜寻非常激烈,但世界上多个地下实验室共同开展相似实验能让研究人员比对结果。2022年,PandaX团队便使用一种类似手段确认了LNGS的XENON 实验的结果该实验发现2020年XENON探测到的一个意外信号来自背景噪音而不是暗物质。Collar认为,新的方法和理论也将推动暗物质的研究,而不是用更大更灵敏的探测器打败对手。他说,“已经有很多重复的版本了。”周宁说,下一个十年里,CJPL-II团队将继续提升探测器的灵敏度。他也希望全球暗物质研究社区能共享数据并将CJPL-II的数据与他们自己的数据结合。他说:“我们还有很多工作要做。” ... PC版: 手机版:

封面图片

科学家提出搜寻暗物质的新方法

科学家提出搜寻暗物质的新方法 自暗物质被发现以来,科学家们一直未能探测到它,即使几十年来在世界各地部署了多个超灵敏粒子探测器实验也无济于事。现在,美国能源部(DOE)SLAC 国家加速器实验室的物理学家们提出了一种利用量子设备寻找暗物质的新方法。SLAC物理学家丽贝卡-利恩(Rebecca Leane)是这项新研究的作者之一,她认为大多数暗物质实验都在寻找银河系暗物质,这种暗物质会直接从太空发射到地球上,但另一种暗物质可能已经在地球周围徘徊了很多年。利恩说:"暗物质进入地球后,会四处弹跳,最终被地球的引力场困住。随着时间的推移,这种热化暗物质的密度会比少数松散的星系粒子更高,这意味着它更有可能撞上探测器。不幸的是,热化暗物质的移动速度要比银河系暗物质慢得多,这意味着它传递的能量要比银河系暗物质少得多传统探测器可能无法看到。"有鉴于此,利恩和 SLAC 博士后研究员阿尼尔班-达斯找到了 SLAC 的科学家诺亚-库林斯基,他是一个新实验室的负责人,主要研究用量子传感器探测暗物质。库林斯基说,科学家通常认为这是因为冷却系统不完善或环境中存在热源。但他说,可能还有其他原因:"如果我们实际上有一个完美的冷系统,而我们无法有效冷却它的原因是它不断受到暗物质的轰击呢?"达斯、库林斯基和利恩想知道,超导量子设备是否可以重新设计为热化暗物质探测器。根据他们的计算,激活量子传感器所需的最小能量足够低,约为千分之一电子伏特,因此它可以探测到低能量的银河系暗物质以及悬浮在地球周围的热化暗物质粒子。当然,这并不意味着暗物质是量子设备失灵的罪魁祸首只是说它是可能的,下一步就是要弄清楚他们能否以及如何将敏感的量子设备变成暗物质探测器。因此,有几件事需要考虑。首先,也许有更好的材料来制造这种装置。利恩说:"我们一开始考虑的是铝,这只是因为铝可能是迄今为止用于探测器的特性最好的材料。但事实可能证明,对于我们正在研究的质量范围和我们想要使用的探测器类型,也许有更好的材料。"利恩说,还有一种可能性是,热化暗物质与量子设备的相互作用不会像银河系暗物质被怀疑与直接探测设备的相互作用那样。在这项研究中只是考虑了暗物质进入并直接弹开探测器的简单情况,但它还可以做很多其他事情。例如,其他粒子可能与暗物质相互作用,改变探测器中粒子的分布方式。"这就是在 SLAC 工作的好处之一。我们确实有相当多样化的小组在从事许多不同的科学研究,我觉得这个项目是 SLAC 研究的一个非常好的协同效应。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家们探测到了中子星与潜在黑洞在质量缝隙中碰撞产生的引力波

科学家们探测到了中子星与潜在黑洞在质量缝隙中碰撞产生的引力波 低质量间隙黑洞(深灰色表面)与中子星的凝聚与合并,颜色从深蓝色(每立方厘米 60 克)到白色(每立方厘米 600 千克)不等,凸显了中子星低密度物质的强烈变形。资料来源:I. Markin(波茨坦大学)、T. Dietrich(波茨坦大学和马克斯-普朗克引力物理研究所)、H. Pfeiffer、A. Buonanno(马克斯-普朗克引力物理研究所)。2023 年 5 月,就在 LIGO-Virgo-KAGRA 第四次观测运行开始后不久,位于美国路易斯安那州的 LIGO 利文斯顿探测器观测到了一个引力波信号,该信号来自于很可能是一颗中子星与一个质量为太阳 2.5 至 4.5 倍的紧凑天体的碰撞。中子星和黑洞都是紧凑型天体,是大质量恒星爆炸后的致密残余物。这个名为 GW230529 的信号之所以引人入胜,是因为它的质量较大。它处于已知最重的中子星和最轻的黑洞之间可能存在的质量差距之内。引力波信号本身并不能揭示这个天体的性质。未来对类似事件的探测,特别是那些伴随着电磁辐射爆发的事件,可能有助于解决这个问题。不列颠哥伦比亚大学助理教授、LIGO 科学合作组织副发言人杰斯-麦基弗博士(Dr. Jess McIver)说:"这次探测是我们从第四次 LIGO-Virgo-KAGRA 观测运行中获得的第一个令人兴奋的结果,它揭示了中子星和低质量黑洞之间的类似碰撞的发生率可能比我们之前想象的要高。"由于只有一个引力波探测器看到了这一事件,因此评估它是否真实变得更加困难。这幅图像显示了低质量间隙黑洞(深灰色表面)与中子星的合并,颜色从深橙色(每立方厘米 100 万吨)到白色(每立方厘米 6 亿吨)不等。引力波信号用一组正偏振的应变振幅值表示,颜色从深蓝色到青色不等。资料来源:I. Markin(波茨坦大学)、T. Dietrich(波茨坦大学和马克斯-普朗克引力物理研究所)、H. Pfeiffer、A. Buonanno(马克斯-普朗克引力物理研究所)。检测技术的进步ICG 的研究软件工程师 Gareth Cabourn Davies 博士开发了用于在单个探测器中搜索事件的工具。他说"通过在多个探测器中看到事件来证实事件是我们从噪声中分离信号的最强大工具之一。通过使用适当的背景噪声模型,即使在没有其他探测器支持我们所看到的情况下,我们也能判断出一个事件"。在2015年探测到引力波之前,恒星质量黑洞的质量主要是通过X射线观测发现的,而中子星的质量则是通过无线电观测发现的。由此得出的测量结果分为两个截然不同的范围,两者之间的差距约为太阳质量的 2 到 5 倍。多年来,有少量测量结果蚕食了这一质量差距,天体物理学家对此仍有很大争议。最新研究结果的影响对 GW230529 信号的分析表明,它来自两个紧凑型天体的合并,其中一个天体的质量是太阳质量的 1.2 到 2.0 倍,另一个天体的质量是太阳质量的两倍多一点。虽然引力波信号没有提供足够的信息来确定这些紧凑的天体是中子星还是黑洞,但看起来较轻的天体很可能是中子星,而较重的天体则是黑洞。LIGO-Virgo-KAGRA合作组织的科学家们确信,较重的天体就在质量差距之内。引力波观测现在已经提供了近 200 个紧凑天体质量的测量值。其中,只有一次并合可能涉及质量鸿沟紧凑天体GW190814 信号来自黑洞与一个紧凑天体的并合,该天体的质量超过了已知最重的中子星,而且可能在质量鸿沟之内。来自美国西北大学的 Sylvia Biscoveanu 博士说:"虽然之前已经报道过引力波和电磁波中存在质量间隙天体的证据,但这个系统尤其令人兴奋,因为它是首次引力波探测到与中子星配对的质量间隙天体。对这一系统的观测对双星演化理论和紧凑天体合并的电磁对应理论都有重要意义"。正在进行和未来的观察第四次观测运行计划持续 20 个月,其中包括几个月的间歇期,以便对探测器进行维护并进行一些必要的改进。截至 2024 年 1 月 16 日,也就是当前的间歇期开始时,总共发现了 81 个重要的候选信号。GW230529 是经过详细调查后公布的第一个候选信号。第四次观测运行将于 2024 年 4 月 10 日恢复,LIGO Hanford、LIGO Livingston 和 Virgo 探测器将同时运行。观测运行将持续到 2025 年 2 月,不会再有中断观测的计划。在观测运行继续进行的同时,LIGO-Virgo-KAGRA 的研究人员正在分析运行前半段的数据,并检查已经确定的其余 80 个重要候选信号。到 2025 年 2 月第四次观测运行结束时,观测到的引力波信号总数将超过 200 个。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

哈勃望远镜用最锐利的视角揭示光栅星系的尘埃和暗物质

哈勃望远镜用最锐利的视角揭示光栅星系的尘埃和暗物质 哈勃望远镜拍摄到的 NGC 4753 星系显示了复杂的尘埃结构和暗物质光环。这个星系是研究星系形成和测量宇宙距离的重要场所。NGC 4753 位于室女座,距离地球约 6000 万光年,由天文学家威廉-赫歇尔于 1784 年首次发现。它是室女座第二云中 NGC 4753 星系群的成员,该星系群由大约 100 个星系和星系团组成。这个星系据信是大约 13 亿年前与附近的一个矮星系合并的结果。NGC 4753星系核周围明显的尘埃通道据说就是这次合并过程中吸积形成的。现在人们相信,银河系中的大部分质量都存在于暗物质构成的略微扁平的球形光环中。暗物质是一种目前无法直接观测到的物质,但被认为占宇宙中所有物质的85%左右。它之所以被称为"暗物质",是因为它似乎不与电磁场发生相互作用,因此似乎不会发射、反射或折射光线。由于这个天体的低密度环境和复杂结构,它对检验透镜状星系形成的不同理论也具有科学意义。此外,这个星系还是两个已知的 Ia 型超新星的宿主。这些类型的超新星极其重要,因为它们都是由白矮星爆炸引起的,而白矮星都有伴星,并且总是以相同的亮度达到峰值比太阳亮 50 亿倍。了解这些事件的真实亮度,并将其与表观亮度进行比较,为天文学家提供了一个测量宇宙距离的独特机会。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

天体物理学家在"El Gordo"星系团探测到潜在的碰撞暗物质

天体物理学家在"El Gordo"星系团探测到潜在的碰撞暗物质 这项研究利用数值模拟分析了"El Gordo"(西班牙文的字面意思是"胖子")一个距离我们 70 亿光年的巨型星团合并体内部发生的情况。计算结果表明,在这个星团中,观测到的暗物质最大密度点与其他质量成分最大密度点之间的物理分离可以用所谓的SIDM(自相互作用暗物质)模型来解释,而不是标准模型。这项研究为支持 SIDM 模型做出了重要贡献,根据该模型,暗物质粒子通过碰撞交换能量,从而产生有趣的天体物理学影响。埃尔戈多星系团合成图。图片来源:X 射线:NASA/CXC/Rutgers/J.Hughes et al, Optical: ESO/VLT/Pontificia Universidad.智利天主教大学/L.Infante & SOAR (MSU/NOAO/UNC/CNPq-Brazil)/Rutgers/F.Menanteau, IR: NASA/JPL/Rutgers/F.Menanteau"根据目前公认的标准宇宙学模型,宇宙目前的重子物质密度仅占其总物质含量的 10%。剩下的 90% 是暗物质",该研究的作者里卡多-瓦尔达尼尼解释说。"一般认为,这种物质是非重子的,由冷的无碰撞粒子组成,只对引力有反应。因此被称为"冷暗物质"(CDM)。"研究人员说:"然而,仍有许多观测结果无法用标准模型来解释。"为了回答这些问题,几位作者提出了一个替代模型,称为 SIDM。证明暗物质的碰撞特性,更广泛地说,证明标准宇宙学模型的替代理论是非常复杂的:"然而,在距离我们许多光年之外,有一些独特的实验室可以证明对这一目的非常有用。这些实验室就是大质量星系团,它们是巨大的宇宙结构,一旦发生碰撞,就会产生自宇宙大爆炸以来能量最大的事件。厄尔戈多星系团的质量约为1015个太阳质量,是我们已知的最大星系团之一。由于其特殊性,厄尔戈多一直是众多理论和观测研究的主题"。暗物质可能是碰撞产生的根据标准范式,在星团合并过程中,碰撞气体质量部分的行为将不同于其他两个部分星系和暗物质。在这种情况下,气体会耗散其部分初始能量。瓦尔达尼尼解释说:"这就是为什么在碰撞之后,气体质量密度的峰值会落后于暗物质和星系质量密度的峰值。"然而,在 SIDM 模型中,应该观察到一种奇特的现象,即暗物质中心点它的最大密度点与其他质量成分的中心点在物理上分离,这种奇特现象代表了真正的"SIDM 模型特征"。根据观测,这正是"El Gordo"内部发生的情况。观察"El Gordo"瓦尔达尼尼解释说:"让我们从观测开始。它由两个巨大的子星团组成,分别称为西北(NW)和东南(SE)。El Gordo"星团的 X 射线图像显示,在东南子星团中有一个单一的 X 射线发射峰值,在 X 射线峰值之外还有两条拉长的微弱尾巴。值得注意的是不同质量成分的峰值位置。与"子弹"星团(另一个碰撞星团的重要例子)不同的是,X 射线峰值出现在东南暗物质峰值之前。此外,最亮星团星系(BCG)不仅落后于X射线峰值,而且在空间上似乎也偏离了东南质量中心点。另一个值得注意的方面可以在西北星系团中看到,星系数量密度峰在空间上偏离了相应的质量峰"。研究结果表明,碰撞暗物质可以解释在"El Gordo"观测到的现象。为了解释他的发现并验证 SIDM 模型,瓦尔达尼尼在《天文学与天体物理学》上发表的研究报告中使用了大量所谓的 N 体/流体力学模拟。因此,他进行了一项系统的研究,旨在重现"El Gordo"的观测特征。瓦尔达尼尼指出:"这项模拟研究最重要的结果是,如果暗物质是自相互作用的,那么在"El Gordo"星团不同质量中心点之间观测到的相对分离现象自然就能得到解释。正因为如此,这些发现提供了一个明确的暗物质行为特征,它在能量非常高的高红移星团碰撞中表现出碰撞特性。"然而,也有不一致的地方,因为这些模拟得到的 SIDM 截面值高于目前的上限,而目前的上限在星团尺度上为一阶。这表明,目前的 SIDM 模型应被视为一种低阶近似,而描述暗物质在主要星团合并中相互作用的基本物理过程要比通常假定的基于暗物质粒子散射的方法所能充分表达的更为复杂。"这项研究令人信服地证明了在碰撞星团之间存在自相互作用暗物质的可能性,以此替代标准的无碰撞暗物质范式"。编译来源:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人