研究表明RNA分子的化学特性可能在复杂生命形式的发展过程中起到重要作用

研究表明RNA分子的化学特性可能在复杂生命形式的发展过程中起到重要作用 在早期荒凉的地球上,复杂生命是如何进化的?最初,一定是核糖核酸(RNA)携带了最初的遗传信息。这些生物大分子要在其序列中积累复杂性,就需要释放水。然而,在主要被海水覆盖的早期地球上,这一过程具有挑战性。在最近发表在《美国化学学会杂志》(JACS)上的一篇论文中,德国慕尼黑大学教授迪特尔-布劳恩(Dieter Braun)团队的研究人员表明,在 RNA 与周围水的斗争中,它的天然循环能力和合适的环境条件可能起着决定性的作用。前生物环境中的分子进化合作研究中心(CRC)发言人兼ORIGINS卓越集群协调员布劳恩解释说:"RNA构件在不断生长的RNA链中每形成一个键,就会释放出一个水分子。反之,当水加入到 RNA 分子中时,RNA 构建块就会反馈到前生物池中"。"在低盐度、高 pH 值的条件下,这种水的周转尤其有效。我们的实验表明,在地球早期火山岛上普遍存在的条件下,生命可以从很小的一组分子中产生,"该研究的第一作者阿德里安娜-塞朗(Adriana Serrão)说。在这些条件下,RNA 能够在不添加水分子的情况下分裂。RNA 链的末端保持无水状态,并能自发地重新形成新的 RNA 键。布劳恩的实验室证明,在复制序列信息时,这种分裂的 RNA 重新结合的效率很高,而且非常精确。只有当 RNA 构建块与双链结构中具有精确匹配碱基对的模板 RNA 分子结合时,这一过程才会发生。这样,在现有的 RNA 链因加水而解体之前,就会产生一个副本。以前人们认为,RNA 只能通过"随机"构建长度约为 200 个核苷酸的序列(即所谓的核糖酶)来复制自身。然而,核糖酶只能在生理盐水环境下工作,因此对 RNA 不利。这项新研究的结果是,在RNA进化的早期阶段不需要这些复杂的核糖酶序列。"这种精确度与核糖酶实现的 RNA 复制相当,"该研究的第一作者 Sreekar Wunnava 说。"这意味着,RNA世界的出现不需要先有复杂的长序列"。因此,早期生命由一个非常简单的新陈代谢过程组成,在这个过程中,RNA 序列通过不断替换回收分子的方式进行复制。要做到这一点,只需要一个碱性淡水环境,比如今天仍然存在于夏威夷群岛或冰岛等火山岛上的淡水环境。布劳恩解释说:"因此,生命可能是从由 RNA 构建块组成的简单、寒冷的前生物原始汤中产生的。虽然反应在这些条件下进行得非常缓慢,需要几天时间才能完成,但进化之初并不缺乏时间,原始火山岛上的寒冷淡水避难所让RNA得以在原本荒凉的早期地球上生存下来。"编译自:ScitechDaily ... PC版: 手机版:

相关推荐

封面图片

研究人员通过低温电子显微镜揭示了复制酶的原子结构

研究人员通过低温电子显微镜揭示了复制酶的原子结构 图中显示的是一种被认为与生命起源有关的 RNA 聚合酶核糖酶。图中的核糖酶被冰冻起来,象征着它是如何被及时冷冻以进行成像的,以及它是如何在冰冷的条件下发挥最佳作用的。黄/红光突出显示了活性位点,透明显示了模板-产物螺旋的拟议位置。图片来源:Rune Kidmose错综复杂的生命分子机制是如何从简单的起点产生的,这是一个长期存在的问题。一些证据表明,在原始的"RNA 世界"中,"RNA 复制机"(即所谓的复制酶)开始复制自身和其他 RNA 分子,从而启动了进化和生命本身。然而,古老的复制酶似乎已经消失在时间的长河中,它在现代生物学中的作用已被更高效的蛋白质机器所取代。为了支持"RNA 世界"假说,研究人员一直试图在实验室中重新创造出一种等效的 RNA 复制酶。虽然已经发现了这种古代复制酶的分子"二重身",但由于难以确定动态 RNA 分子的结构,它们的详细分子结构和作用方式仍然难以确定。嗜冰 RNA 复制酶的结构在发表于《美国国家科学院院刊》(PNAS)的一篇研究论文中,一个研究小组首次利用低温电子显微镜(cryo-EM)报告了 RNA 复制酶的原子结构。正在研究的 RNA 复制酶是由 Holliger 实验室(英国剑桥大学 MRC LMB)开发的,能够在共晶冰相(类似于冰渣)中利用核苷酸三联体高效复制长模板。现任奥胡斯大学助理教授的 Emil L. Kristoffersen 从霍利格实验室博士后学习归来后,促成了与安德森实验室(丹麦奥胡斯大学)的合作,通过低温电子显微镜确定了 RNA 复制酶的结构。有趣的是,该结构与基于蛋白质的聚合酶有着惊人的相似之处,其模板结合、聚合和底物分辨结构域的分子形状类似于一只张开的手。"我们惊讶地发现,我们在试管中人工进化出的核糖酶竟然具有天然存在的蛋白质聚合酶的特征。"英国剑桥大学 MRC LMB 项目负责人 Philipp Holliger 解释说:"这表明,无论材料是 RNA 还是蛋白质,进化都能发现趋同的分子解决方案。"RNA 世界中的 RNA 合成模型为了更好地了解 RNA 复制酶的工作原理,研究人员进行了全面的突变研究,以突出 RNA 结构的关键要素。这项分析证实了催化位点的特征,同时也揭示了两个所谓的"接吻环"相互作用的重要性,这两个相互作用将支架亚基和催化亚基结合在一起,同时也揭示了一个特定的RNA结构域对保真度的重要性,即复制酶复制RNA链的准确性。虽然研究人员无法确定复制酶在积极复制 RNA 时的"作用中"结构,但他们还是建立了一个与所有实验数据相一致的基于 RNA 的 RNA 复制模型。"冷冻电镜是研究 RNA 分子结构和动态特征的一种强大方法。通过将低温电子显微镜数据与实验相结合,我们能够建立这种复杂的 RNA 机器内部运作的模型。"Ewan McRae 告诉我们,他在奥胡斯大学安德森实验室做博士后时曾从事过低温电子显微镜工作,现在已经在美国得克萨斯州休斯顿卫理公会研究所成立了自己的研究小组。RNA 纳米技术和医学的灵感来源这项研究令人兴奋地首次看到了被认为位于生命之树根部的 RNA 复制酶。然而,目前开发的基于 RNA 的复制酶效率很低(与基于蛋白质的聚合酶相比),还不能维持自身的复制和进化。这项研究提供的结构洞察力可能有助于设计更高效的复制机制,从而让我们更接近在试管中开发 RNA 世界的情景。"通过使用可能存在于 RNA 世界中的化学修饰,RNA 复制酶的特性可能会得到进一步改善。"丹麦奥胡斯大学副教授 Ebbe Sloth Andersen 解释说:"此外,对生命起源的研究还发现了几种新型 RNA 构建模块,可用于新兴的 RNA 纳米技术和医学领域。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

原始的开端:充满了钠和碳酸盐的苏打湖如何孕育了早期生命

原始的开端:充满了钠和碳酸盐的苏打湖如何孕育了早期生命 加拿大不列颠哥伦比亚省的最后机会湖(Last Chance Lake)是苏打湖的现代模拟物,它可能支持了地球早期细胞的出现。资料来源:Zachary R. Cohen为了探索这种可能性,Zachary Cohen 及其同事从加拿大的 Last Chance 湖和 Goodenough 湖收集了季节性蒸发后的湖水。这些苏打湖在 pH 值为 10 时分别含有 ~1 M Na+ 和 ~1 mM Mg2+。作者发现,短 RNA 引物在湖水中的自发延伸率与标准实验室条件下的延伸率相当。作者在湖水中加入了早期地球上可能存在的脂肪酸,以观察分子是否会聚集成膜。膜在模拟降雨事件的稀水中形成,即使被旱季的浓湖水包围,膜也能持续存在。作者认为,早期地球上的苏打湖可能支持了原生细胞发育的关键特征,RNA复制和核糖酶活动发生在旱季,而囊泡形成则发生在雨季。参考文献:Zachary R Cohen、Dian Ding、Lijun Zhou、Saurja DasGupta、Sebastian Haas、Kimberly P Sinclair、Zoe R Todd、Roy A Black、Jack W Szostak 和 David C Catling 于 2024 年 3 月 19 日在PNAS Nexus 上发表的文章:《天然苏打湖为 RNA 和膜功能提供了兼容条件,可能促成了生命的起源》DOI: 10.1093/pnasnexus/pgae084编译自:ScitechDaily ... PC版: 手机版:

封面图片

先进的 RNA 测序技术揭示了 COVID-19 新变异的驱动因素

先进的 RNA 测序技术揭示了 COVID-19 新变异的驱动因素 了解助长 SARS-CoV-2 产生变异能力的遗传机制对遏制 COVID 有很大帮助。在今天(4月22日)发表在《自然-微生物学》(Nature Microbiology)上的这项研究中,贝勒医学院和合作机构的研究人员开发了一种名为tARC-seq的新技术,它揭示了影响SARS-CoV-2分化的遗传机制,并使研究小组能够计算出SARS-CoV-2的变异率。利用tARC-seq,研究人员还在实验室中捕捉到了受感染细胞中SARS-CoV-2的新突变,再现了全球大流行病毒测序数据所揭示的观察结果。这些发现有助于监测病毒在人类群体中的进化。"SARS-CoV-2 病毒使用RNA 而不是DNA 来存储其遗传信息。我们实验室长期以来一直对研究 RNA 生物学感兴趣,当 SARS-CoV-2 出现时,我们决定研究它的 RNA 复制过程,RNA 病毒的复制过程通常容易出错,"通讯作者、贝勒大学分子与人类遗传学教授、分子病毒学与微生物学教授 Christophe Herman 博士说。研究人员希望跟踪 RNA 复制错误,因为这些错误对于了解病毒如何进化、如何在人类群体中传播时发生变化和适应至关重要,但目前的方法缺乏精确性,无法检测到罕见的新 SARS-CoV-2 变异,尤其是在病毒数量较少的样本中,如来自患者的样本。Dan L Duncan 综合癌症中心成员赫尔曼说:"由于患者样本中的 SARS-CoV-2 RNA 副本非常少,因此很难区分 SARS-CoV-2 RNA 依赖性 RNA 聚合酶(RdRp)(复制这种病毒 RNA 的酶)产生的错误和序列分析中使用的其他酶产生的错误。我们开发了一种技术,称为靶向精确RNA共识测序(tARC-seq),它使我们能够测量复制极低量特定RNA时的真实误差。"最初的想法是,由于 SARS-CoV-2 有一种内部机制来修复 RdRp 所犯的错误,因此病毒应该不会很快进化或变异。赫尔曼说:"这种想法与大流行期间世界各地经常出现新的 COVID 变种这一事实形成了鲜明对比。自大流行开始以来,我们已经看到了一些突出的变种,包括 Alpha、Beta、Delta 和 Omicron,以及这些群体中的变种"。有了改进后的分析工具,研究人员准确测定了实验室细胞培养物和临床样本中SARS-CoV-2的变异频率和变异类型。赫尔曼说:"我们发现变异率高于最初的预期,这有助于解释COVID变体频繁出现的原因他们还发现,SARS-CoV-2 RNA 中存在一些热点,这些位置比其他位置更容易发生变异。"例如,我们在与尖峰蛋白相对应的 RNA 区域发现了一个热点,尖峰蛋白是一种能让病毒侵入细胞的蛋白质。此外,尖峰蛋白的RNA也构成了许多疫苗,"赫尔曼说。tARC-seq 方法还发现,新变体的产生涉及模板切换。"RdRp 在复制一个 RNA 模板或序列时,会跳转到附近病毒上的另一个模板,然后继续复制 RNA,因此产生的新 RNA 副本是两个 RNA 模板的混合物,"赫尔曼说。"这种模板切换会导致序列插入或缺失,从而产生病毒变异。我们还观察到了复杂的突变。SARS-CoV-2利用模板切换和复杂突变这两种强大的生物机制,使其能够快速进化,产生变种,以适应并在人类种群中存活。""tARC-seq 使我们能够在实验室细胞培养物中捕捉到新突变的出现,这些新突变再现了全球大流行测序数据中观察到的突变,这既有趣又令人兴奋。我们的新技术捕捉到了个体患者临床样本中新突变的快照,可用于监测人类群体中的病毒进化。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

科学家发现嗅觉和化学感应进化过程中的意外转折

科学家发现嗅觉和化学感应进化过程中的意外转折 "想象一下,在一个世界里,成熟的桃子对一只苍蝇来说尝起来和闻起来都像辛辣的醋,而对另一只苍蝇来说却像一阵夏日的气息,"这项研究的主要作者、伦敦玛丽皇后大学遗传学、基因组学和基础细胞生物学讲师罗曼-阿圭略博士解释说。"我们的研究表明,这不仅是可能的,而且实际上很常见。"研究小组分析了六个不同果蝇物种的五个关键气味检测组织的基因表达模式。这种综合方法使他们能够比以往任何时候都更深入地研究嗅觉的分子基础。一个令人惊讶的发现是"稳定选择"的普遍存在,这种力量使大多数基因在不同世代的表达水平保持不变。然而,在这片稳定的海洋中,研究人员发现数千个基因的表达发生了重大变化,形成了不同苍蝇物种独特的嗅觉景观。化感组织转录组的进化。图片来源:Gwénaëlle Bontonou 等人/《自然通讯阿圭略博士说:"这就像是在一片千篇一律的汪洋大海中发现了隐藏的多样性岛屿。基因表达的这些变化告诉我们新气味、新敏感性的进化,甚至是利用气味导航世界的新方法。"这项研究还揭示了两性之间耐人寻味的差异。在果蝇和许多其他动物中,雌雄常常通过不同的嗅觉镜头来感受世界。研究人员在黑腹果蝇的前肢发现了令人惊讶的过量雄性偏向基因表达,这表明这些前肢在雄性特异性气味检测中起着至关重要的作用。这些发现为了解性别差异如何演变以及它们如何影响动物行为开辟了令人兴奋的新途径。它对感官系统如何进化的一般原理提供了宝贵的见解,为了解包括人类在内的其他动物如何感知其化学环境提供了线索。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

Google DeepMind 推出可预测所有生命分子的结构和相互作用的 AlphaFold 3

Google DeepMind 推出可预测所有生命分子的结构和相互作用的 AlphaFold 3 Google DeepMind 今天在博客中介绍了和 Isomorphic Labs 共同开发的 AlphaFold 3,一种新型生命科学 AI 模型。该模型在准确预测蛋白质、DNA、RNA、配体等的结构基础之上,新增了对其相互作用的预测,相比当前最先进的方法至少有 50% 以上的提升, Google 希望它能够改变对生物世界和药物发现的理解。 该模型的论文已经发表在最新一期自然杂志上。现在,科学家可以通过新推出的易于使用的研究工具 AlphaFold Server 免费使用该模型大部分功能,包括免费的 2 亿个蛋白质结构的数据库。 ,

封面图片

科学家发现光合作用的原子级秘密

科学家发现光合作用的原子级秘密 了解光合蛋白质的生产论文的共同作者、研究小组组长迈克尔-韦伯斯特(Michael Webster)博士说:"叶绿体基因的转录是制造光合蛋白的基本步骤,光合蛋白为植物提供生长所需的能量。我们希望通过更好地了解这一过程在详细的分子水平上能够帮助研究人员开发出光合作用更强的植物。这项工作最重要的成果是创建了一个有用的资源。研究人员可以下载我们的叶绿体聚合酶原子模型,并利用它提出自己关于叶绿体聚合酶如何发挥作用的假设,以及检验这些假设的实验策略。"光合作用是在叶绿体内进行的,叶绿体是植物细胞内的一个小区块,它含有自己的基因组,反映了叶绿体在被植物吞噬和合并之前曾是自由生活的光合细菌。看到植物叶绿体中转录光合基因的聚合酶分子。用电子显微镜收集到的单个分子图像经过分类和排列,揭示了蛋白质复合体结构架构的细节。资料来源:迈克尔-韦伯斯特和伊斯卡-普拉马尼克约翰-英纳斯中心的韦伯斯特小组研究植物如何制造光合蛋白,光合蛋白是实现这一优雅化学反应的分子机器,它将大气中的二氧化碳和水转化为单糖,并产生氧气作为副产品。蛋白质生产的第一阶段是转录,通过读取基因产生"信使RNA"。转录过程由一种名为 RNA 聚合酶的酶完成。叶绿体 RNA 聚合酶的复杂性50 年前,人们发现叶绿体中含有自己独特的 RNA 聚合酶。从那时起,科学家们就对这种酶的复杂程度感到惊讶。它比它的祖先细菌 RNA 聚合酶有更多的亚基,甚至比人类的 RNA 聚合酶还要大。韦伯斯特小组希望了解为什么叶绿体具有如此复杂的 RNA 聚合酶。为此,他们需要对叶绿体 RNA 聚合酶的结构构造进行可视化。研究小组使用一种称为低温电子显微镜(cryo-EM)的方法,对从白芥子植物中纯化的叶绿体RNA聚合酶样本进行成像。原子级分析的启示通过处理这些图像,他们建立了一个包含分子复合体中 5 万多个原子位置的模型。RNA 聚合酶复合体由 21 个亚基组成,分别在核基因组和叶绿体基因组中编码。研究人员对这一结构进行了仔细分析,从而开始解释这些元件的功能。这个模型让他们确定了一种蛋白质,它能在DNA转录过程中与DNA相互作用,并引导DNA进入酶的活性位点。另一种成分可以与正在产生的 mRNA 相互作用,从而在 mRNA 转化为蛋白质之前保护它不被蛋白质降解。韦伯斯特博士说:"我们知道叶绿体 RNA 聚合酶的每一个组成部分都起着至关重要的作用,因为缺少其中任何一个组成部分的植物都不能制造光合蛋白质,因此也就不能变绿。我们正在仔细研究原子模型,以确定装配的 21 个组件中每个组件的作用。"第一作者Ángel Vergara-Cruces博士说:"现在我们有了一个结构模型,下一步就是确认叶绿体转录蛋白的作用。通过揭示叶绿体转录的机制,我们的研究有助于深入了解叶绿体在植物生长、适应和应对环境条件中的作用。"共同第一作者伊斯卡-普拉马尼克(Ishika Pramanick)博士说:"从极具挑战性的蛋白质纯化开始,到为这一巨大复杂的蛋白质拍摄令人惊叹的低温电子显微镜图像,再到最终看到我们的工作成果的印刷版本,在这一非凡的工作历程中有许多令人惊喜的时刻。"韦伯斯特博士总结道:"高温、干旱和盐度限制了植物进行光合作用的能力。面对环境压力仍能可靠地生产光合蛋白的植物可能会以不同的方式控制叶绿体转录。我们期待看到我们的研究成果被用于开发更强健作物的重要工作中。"编译自:ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人