鸟儿在睡梦中也会默默歌唱 现在我们可以破译它们的梦了

鸟儿在睡梦中也会默默歌唱 现在我们可以破译它们的梦了 但是,直到现在,人们还无法绘制出这种夜间活动是如何被处理的。在他们的新研究中,巴西利亚大学的研究人员将鸟类做梦时的发声肌肉运动变成了合成歌曲。研究鸟鸣背后物理机制的专家、该研究的通讯作者加布里埃尔-明德林(Gabriel Mindlin)说:"梦是我们生存中最亲密、最难以捉摸的部分之一。知道我们与如此遥远的物种分享这一点非常令人感动。而有可能进入一只正在做梦的鸟儿的心灵聆听它梦中的声音则是一种无法抗拒的诱惑。"鸟类的声音是由一个只有它们才拥有的独特器官咽鼓管发出的。咽鼓管位于气管的底部,空气通过时会引起部分或全部管壁振动,而周围的气囊就像一个共鸣腔。声音的高低取决于周围肌肉对咽鼓管和气道施加的张力。研究人员选择了大基斯卡迪鸟进行研究,因为这是他们以前研究中使用过的物种。大基斯卡迪鸟常见于中美洲和南美洲,这种喧闹、好斗的鸟以其三音节的叫声而闻名事实上,它的"kis-ka-dee"声就是它名字的由来。在捍卫自己的领地时,大基斯卡迪会发出一种独特的发声模式由短音节组成的"颤音",并伴有竖起头顶羽毛的动作。睡眠时记录的颤音肌电图活动和动态模型生成的合成声音研究人员在鸟体内植入定制的肌电图(EMG)电极,以测量腹侧斜肌的肌肉反应和电活动,腹侧斜肌是产生基斯卡迪鸟鸣声的最主要肌肉。在鸟儿清醒和睡眠时,同时记录肌电图和鸟鸣音频。我们利用现有的基斯卡迪鸟声音产生机制的动力系统模型,将信息转化为合成歌曲。基本而言,动态系统模型将声音在咽鼓管中产生时的情况分解为一系列数学公式。"在过去的 20 年里,我一直在研究鸟鸣的物理学原理以及如何将肌肉信息转化为歌声,"米德林说。"通过这种方式,我们可以将肌肉活动模式作为鸟鸣产生模型的随时间变化的参数,并合成相应的歌声"。通过分析睡眠时的肌肉活动,发现了与基斯卡德鸦白天争夺领地时发出的颤音相对应的活动模式。有趣的是,"梦中颤音"与头部羽毛的扬起有关,这与白天的情况相同。研究人员根据收集到的数据合成了其中一种颤音。鸟的梦听起来像什么?米德林说:"想象那只孤独的鸟儿在梦中重现领土争端,我感到非常同情。我们与其他物种的共同点比我们通常认识到的要多得多。"研究人员说,他们的研究为"观察鸟类大脑提供了一个独特的窗口",利用动态生物力学模型将信号转化为行为的方法可以推广到其他物种。换句话说,在这项工作中,我们展示了如何利用物理模型来倾听鸟儿在做什么梦。这项研究发表在《混沌》杂志上。 ... PC版: 手机版:

相关推荐

封面图片

新研究揭示了为什么我们的肌肉会随着年龄增长而衰弱

新研究揭示了为什么我们的肌肉会随着年龄增长而衰弱 该图谱发表在《自然-衰老》(Nature Aging)杂志上,它发现了新的细胞群,可以解释为什么一些肌肉纤维比其他肌肉纤维衰老得更快。它还确定了肌肉对抗衰老的补偿机制。这些发现为未来的疗法和干预措施提供了途径,以改善肌肉健康和老年人的生活质量。这项研究是国际"人类细胞图谱"计划的一部分,该计划旨在绘制人体每种细胞类型的图谱,从而改变人们对健康和疾病的认识。随着年龄的增长,我们的肌肉会逐渐变弱。这会影响我们进行站立和行走等日常活动的能力。对某些人来说,肌肉流失会加剧,导致跌倒、行动不便、丧失自主能力,并引发一种叫做"肌肉疏松症"的病症。人们对肌肉随时间衰弱的原因仍然知之甚少。在这项新研究中,威康桑格研究所和中国中山大学的科学家们利用单细胞和单核测序技术以及先进的成像技术,分析了来自 17 个年龄在 20 岁至 75 岁之间的人的肌肉样本。研究小组发现,在来自老年样本的肌肉干细胞中,控制核糖体(负责生产蛋白质)的基因活性较低。随着年龄的增长,这损害了细胞修复和再生肌肉纤维的能力。此外,这些骨骼肌样本中的非肌肉细胞群产生了更多的促炎分子CCL2,将免疫细胞吸引到肌肉中,加剧了与年龄相关的肌肉退化。此外,还观察到与年龄有关的一种特定快肌肌纤维亚型的损失,这种肌纤维亚型是肌肉爆发力的关键。不过,他们首次发现了肌肉的几种补偿机制,似乎可以弥补这种损失。这些机制包括慢速肌纤维转而表达失去的快速肌纤维亚型的特征基因,以及剩余快速肌纤维亚型的再生增加。研究小组还在肌肉纤维中发现了特殊的细胞核群,它们有助于重建随着年龄增长而衰退的神经和肌肉之间的连接。研究小组在实验室培育的人类肌肉细胞中进行的基因敲除实验证实了这些细胞核在维持肌肉功能方面的重要性。这项研究的第一作者、威康桑格研究所的 Veronika Kedlian 说:"我们采用无偏见、多方面的方法来研究肌肉衰老,结合不同类型的测序、成像和调查,揭示了以前未知的衰老细胞机制,并突出了有待进一步研究的领域"。该研究的资深作者、中国广州中山大学的张洪波教授说:"在中国、英国和其他国家,我们都有老龄化人口,但我们对老龄化过程本身的了解却很有限。我们现在可以详细了解肌肉如何在衰老的影响下尽可能长时间地保持功能。"这项研究的资深作者、威康桑格研究所(Wellcome Sanger Institute)的莎拉-泰克曼(Sarah Teichmann)博士是人类细胞图谱的创始人之一:"通过人类细胞图谱,我们正在以前所未有的方式详细了解人体,从人类发育的最初阶段一直到老年。有了这些对骨骼肌健康老化的新认识,世界各地的研究人员现在可以探索如何对抗炎症、促进肌肉再生、保护神经连接等。这样的研究发现对于制定治疗策略,促进后代更健康地步入老年有着巨大的潜力。"编译来源:ScitechDaily ... PC版: 手机版:

封面图片

密歇根大学开发的AI工具可以通过狗叫声分辨出其是否具有攻击性

密歇根大学开发的AI工具可以通过狗叫声分辨出其是否具有攻击性 这项研究是与墨西哥普埃布拉国家天体物理学、光学和电子学研究所(INAOE)合作进行的,研究发现,最初针对人类语言训练的人工智能模型可以作为一个起点,用来训练针对动物交流的新系统。相关成果已在计算语言学、语言资源和评估联合国际会议上公布。"通过使用最初在人类语音基础上训练的语音处理模型,我们的研究打开了一扇新窗口,让我们了解如何利用迄今为止在语音处理方面所取得的成果,开始理解狗叫声的细微差别,"马大计算机科学与工程系 Janice M. Jenkins 学院教授兼人工智能实验室主任Rada Mihalcea 说。"对于与我们共同生活在这个世界上的动物,我们还有很多不了解的地方。人工智能的进步可以用来彻底改变我们对动物交流的理解,而我们的研究结果表明,我们也许不必从头开始"。开发能够分析动物发声的人工智能模型的主要障碍之一是缺乏公开可用的数据。虽然记录人类语音的资源和机会很多,但从动物身上收集此类数据却比较困难。"动物的发声在逻辑上更难收集和记录,"第一作者、马萨诸塞大学计算机科学与工程系博士生 Artem Abzaliev 说。"它们必须在野外被动地记录下来,如果是家养宠物,则必须征得主人的同意"。由于缺乏可用数据,分析狗发声的技术难以开发,而现有的技术也因缺乏训练材料而受到限制。研究人员通过重新利用现有模型克服了这些挑战,该模型最初是为分析人类语音而设计的。这种方法使研究人员能够利用强大的模型,这些模型构成了我们今天使用的各种语音技术的支柱,包括语音到文本和语言翻译。这些模型经过训练,可以分辨出人类语音中的细微差别,如语调、音调和口音,并将这些信息转换成计算机可以用来识别所说词语、识别说话人等的格式。"这些模型能够学习和编码人类语言和语音中极其复杂的模式,"Abzaliev 说。"我们想了解能否利用这种能力来辨别和解读狗叫声。"研究人员使用了74只不同品种、年龄和性别的狗在各种情况下发出的声音数据集。亨伯托-佩雷斯-埃斯皮诺萨(Humberto Pérez-Espinosa)是INAOE的合作者,他领导的团队负责收集数据集。然后,阿布扎利耶夫利用这些录音修改了一个机器学习模型一种能识别大型数据集中模式的计算机算法。该团队选择了一种名为 Wav2Vec2 的语音表示模型,该模型最初是在人类语音数据上训练出来的。有了这个模型,研究人员就能生成从狗身上收集到的声音数据的表示,并解释这些表示。他们发现,Wav2Vec2 不仅在四项分类任务中取得了成功,而且其准确率高达 70%,超过了专门针对狗叫声数据训练的其他模型。"这是首次将针对人类语音进行优化的技术用于帮助解码动物交流,"Mihalcea 说。"我们的研究结果表明,从人类语音中得出的声音和模式可以作为分析和理解动物发声等其他声音的声学模式的基础。"除了建立人类语言模型作为分析动物交流的有用工具这将使生物学家、动物行为学家等受益之外,这项研究对动物福利也有重要意义。研究人员说,了解狗发声的细微差别可以大大改善人类解读和回应狗的情感和生理需求的方式,从而加强对它们的照顾,防止潜在的危险情况发生。 ... PC版: 手机版:

封面图片

研究团队之一的佩德罗·内托在接受媒体采访时表示,大多数机器人都由硬性材料制成。然而,当我们观察动物时,会注意到它们的身体可以由硬

研究团队之一的佩德罗·内托在接受媒体采访时表示,大多数机器人都由硬性材料制成。然而,当我们观察动物时,会注意到它们的身体可以由硬部件(骨骼)和软部件(如肌肉)组成。像蚯蚓这样的某些动物全身都是软的。从自然中获取灵感,我们预见下一代机器人将会融入由软材料制成的组件,在某些情况下,它们可能全身都是软的。

封面图片

研究人员发现神经元能在我们说话前预测我们要说什么

研究人员发现神经元能在我们说话前预测我们要说什么 麻省总医院(MGH)的研究人员最近进行了一项研究,利用先进的大脑记录方法揭示了人脑中神经元的协作功能,从而使人们能够将自己的想法形成文字,并随后用语言表达出来。这些发现共同提供了一幅详细的地图,显示辅音和元音等语音如何在说话之前就在大脑中呈现,以及在语言生成过程中它们是如何串联在一起的。这项发表在《自然》(Nature)杂志上的研究揭示了大脑神经元对语言生成的影响,这将有助于改善对言语和语言障碍的理解和治疗。资深作者、麻省总医院和哈佛医学院神经外科副教授、医学博士齐夫-威廉姆斯(Ziv Williams)说:"虽然说话通常看起来很容易,但我们的大脑在自然说话的过程中会执行许多复杂的认知步骤包括想出我们想说的话、计划发音动作以及发出我们想要的声音。我们的大脑以惊人的速度完成了这些壮举在自然语音中大约每秒三个单词,而且错误极少。然而,我们是如何精确地完成这一壮举的一直是个谜"。神经元记录技术的突破威廉姆斯和他的同事利用一种名为"神经像素"(Neuropixels)探针的尖端技术,记录了人脑前额叶皮层单个神经元的活动。他们还发现,大脑中存在着专门负责说话和听力的独立神经元群。在人体中使用 Neuropixels 探头是 MGH 的首创。威廉姆斯说:"这些探针非常了不起它们比人类头发丝的宽度还小,却拥有数百个通道,能够同时记录数十甚至数百个单个神经元的活动,因此,使用这些探针可以提供前所未有的新见解,让我们了解人类神经元是如何集体行动的,以及它们是如何共同产生语言等复杂的人类行为的。"威廉姆斯曾与麻省总医院和哈佛医学院神经学教授、医学博士悉尼-卡什(Sydney Cash)合作开发这些记录技术,后者也是这项研究的负责人。解码语音要素这项研究显示了大脑中的神经元是如何代表构建口语词汇所涉及的一些最基本要素的从简单的语音(称为音素)到将其组合成更复杂的字符串(如音节)。例如,"狗"(dog)一词需要辅音"da",它是通过舌头接触牙齿后面的硬腭产生的。通过记录单个神经元,研究人员发现,某些神经元会在这个音素被大声说出之前变得活跃。其他神经元则反映了构词过程中更复杂的方面,如将音素具体组合成音节。研究人员利用他们的技术表明,可以在个人发音之前可靠地确定他们会说的语音。换句话说,科学家可以在实际说话之前预测辅音和元音的组合。利用这种能力,可以制造出能够产生合成语音的人工假肢或脑机接口,这将使一系列病人受益。这项研究的共同作者阿尔琼-卡纳(Arjun Khanna)说:"在多种神经系统疾病中都能观察到语音和语言网络的中断,包括中风、脑外伤、肿瘤、神经退行性疾病、神经发育障碍等等。我们希望更好地了解实现语音和语言的基本神经回路将为开发这些疾病的治疗方法铺平道路。"研究人员希望通过研究更复杂的语言过程来扩展他们的工作,从而研究人们如何选择他们想说的话,以及大脑如何将词语组合成句子,向他人传达个人的思想和情感等相关问题。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

研究发现番茄植株会利用两种不同的代谢途径产生自我防御机制

研究发现番茄植株会利用两种不同的代谢途径产生自我防御机制 番茄焦油是热心园艺家们最熟悉的一种麻烦,它是一种金黑色的粘性物质,在接触植物后会附着在手上。原来,这种物质特有的粘性有一个重要的作用。它是由一种叫做酰基糖的糖组成的,对害虫来说是一种天然的"苍蝇纸"。这项研究的负责人、密歇根州立大学研究员罗伯特-拉斯特(Robert Last)说:"植物在进化过程中制造了许多神奇的毒药和其他生物活性化合物。Last 实验室专门研究酰基糖以及产生和储存酰基糖的微小毛发状结构,即毛状体。"一项惊人的发现是,研究人员在番茄根部也发现了曾被认为只存在于毛状体中的酰基糖。这一发现是一个遗传学之谜,它提出了许多问题,也带来了许多启示。MSU 研究的目的是了解这些根部酰基糖的来源和功能。他们发现,番茄植物不仅在根部和毛状体中合成化学性质独特的酰基糖,而且这些酰基糖是通过两条平行的代谢途径产生的。这就相当于汽车厂的流水线在生产同一款汽车的两种不同型号,但却从不相互影响。在密歇根州立大学生物化学和分子生物学系,番茄幼苗是 Last 实验室为研究茄科植物而培育的。研究人员分析了根和芽之间独特的化学差异,两者都含有酰基糖。图片来源:Connor Yeck/麻省理工大学这些发现有助于科学家们更好地了解茄科植物的恢复能力和进化过程,茄科是一个庞大的植物家族,包括西红柿、茄子、马铃薯、辣椒、烟草和牵牛花。它们还能为研究人员提供有价值的信息,帮助他们将植物制造的分子开发成化合物,以帮助人类。"从药品、杀虫剂到防晒霜,人类为不同用途改造的许多小分子都来自植物、微生物和昆虫之间的军备竞赛,"Last 说。除了生长所必需的关键化学物质外,植物还能产生在环境互动中发挥关键作用的化合物宝库。这些化合物可以吸引有用的授粉者,也是抵御有害生物的第一道防线。密歇根州立大学博士后研究员、最新论文的第一作者雷切尔-柯文(Rachel Kerwin)说:"这些特殊代谢物的非凡之处在于,它们通常是在高度精确的细胞和组织中合成的。""以酰基糖为例,我们不会在番茄植株的叶片或茎中发现它们。这些具有物理粘性的防御代谢物就产生于毛状体的顶端。"当有报道称在番茄根部也能发现酰基糖时,Kerwin 认为这是对老式基因侦查工作的一种呼唤。从左到右:Jaynee Hart、Rachel Kerwin 和 Robert Last 在密歇根州立大学质谱和代谢组学核心的分析设备前合影。研究小组揭开了番茄植物的进化和遗传之谜。图片来源:Connor Yeck/密歇根州立大学这些酰基糖在根部的出现令人着迷,并引发了许多问题。这是如何发生的,它们是如何被制造出来的,它们与我们一直在研究的毛状体酰基糖是否不同?为了着手解决这个进化之谜,实验室成员与 MSU 质谱分析和代谢组学核心的专家以及 Max T. Rogers 核磁共振设施的工作人员进行了合作。在比较番茄幼苗根部和芽部的代谢物时,发现了多种差异。地上部分和地下部分酰基糖的基本化学组成明显不同,以至于可以将它们完全定义为不同类别的酰基糖。最后,密苏里大学自然科学学院生物化学与分子生物学系和植物生物学系的大学特聘教授用一个有用的比喻来解释遗传学家是如何研究生物学的。"他说:"试想一下,如果要弄清一辆汽车是如何工作的,就必须一个一个部件地拆出来,把汽车轮胎弄平后发现发动机还能运转,那么即使你不知道轮胎的具体作用,也算发现了一个关键事实。"把上面举例中的汽车零件换成基因,就能更清楚地了解最后实验室为进一步破解根部酰基糖密码所做的工作。通过查看公开的基因序列数据,Kerwin 注意到在番茄毛状体酰基糖生产过程中表达的许多基因在根部都有近亲。在确定了一种被认为是根部酰基糖生物合成第一步的酶后,研究人员开始"拆车"。当他们敲除根部酰基糖候选基因时,根部酰基糖的生产消失了,而毛状体酰基糖的生产没有受到影响。与此同时,当研究充分的毛状体酰基糖基因被敲除时,根部酰基糖的生产照常进行。这些发现有力地证明了疑似代谢镜像的存在。Last说:"除了我们研究多年的地面酰基糖途径外,我们在这里发现了存在于地下的第二个平行宇宙。"Kerwin补充说:"这证实了我们在同一种植物中同时存在两种途径。"为了实现这一突破,最新论文的第二作者、博士后研究员杰尼-哈特(Jaynee Hart)仔细研究了毛状体和根酶的功能。正如毛状体酶和它们产生的酰基糖是一种经过充分研究的化学匹配,她发现根部酶和根部酰基糖之间也有很好的联系。哈特解释说:"研究分离出来的酶是一种强大的工具,可以确定它们的活性,并就它们在植物细胞内的功能作用得出结论。"这些发现进一步证明了单株番茄植物中存在的平行代谢途径。"植物和汽车是如此不同,但又如此相似,当你打开众所周知的引擎盖时,你就会意识到使它们发挥作用的众多部件和连接。这项工作让我们对番茄植物的其中一个部件有了新的认识,并促使我们进一步研究它的进化和功能,以及我们是否能以其他方式利用它,"资助这项工作的美国国家科学基金会项目主任潘卡杰-贾斯瓦尔(Pankaj Jaiswal)说。"我们对生物从西红柿和其他作物到动物和微生物了解得越多,利用所学知识造福社会的机会就越广泛。"该论文还报告了与生物合成基因簇(BGCs)有关的一个令人着迷和意想不到的转折。BGC是染色体上物理分组的基因集合,有助于特定的代谢途径。此前,Last 实验室发现了一个 BGC,其中含有与番茄植株毛状体酰基糖有关的基因。现在,Kerwin、Hart 和他们的合作者发现,根部表达的酰基糖酶也在同一个基因簇中。Kerwin说:"通常在BGCs中,基因在相同的组织和相似的条件下共同表达。有些在毛状体中表达,有些在根中表达。"这一发现促使Kerwin深入研究茄科植物的进化轨迹,希望找出这两种独特的酰基糖途径是何时以及如何形成的。具体来说,研究人员注意到,大约1900万年前,负责毛状体酰基糖的酶发生了复制。这种酶有朝一日将负责新发现的根部表达的酰基糖途径。在根部"开启"这种酶的确切机制仍然未知,这为 Last 实验室继续解开茄科植物的进化和代谢秘密铺平了道路。与茄科植物的合作提供了如此多的科学资源,以及一个强大的研究人员社区。通过它们作为作物和园艺的重要性,这些植物是人类数千年来一直关心的对象。最后,这些突破也提醒人们天然杀虫剂的重要性,酰糖类等防御代谢物最终代表了天然杀虫剂。如果我们发现这些根部酰基糖能够有效地驱除有害生物,是否可以将它们培育到其他茄科植物中,从而帮助植物生长,而无需使用有害的合成杀真菌剂和杀虫剂?这些问题是人类追求更纯净的水、更安全的食品和减少对有害合成化学品的依赖的核心所在。编译来源:ScitechDaily ... PC版: 手机版:

封面图片

多达60%的近地天体可能是暗色彗星 我们喝的是它们送来的水吗?

多达60%的近地天体可能是暗色彗星 我们喝的是它们送来的水吗? 研究结果表明,小行星带中的小行星(太阳系中大致位于木星和火星之间的一个区域,包含了太阳系中的大部分岩质小行星)有地表下的冰。这项研究还显示了将冰运送到近地太阳系的潜在途径。地球是如何获得水的,这是一个长期存在的问题。其中一个大天体可能来自木星家族彗星,这些彗星的轨道接近木星。研究小组的研究成果发表在《伊卡洛斯》(Icarus)杂志上。暗彗星有点神秘,因为它们兼具小行星和彗星的特征。小行星是没有冰的岩质天体,运行轨道离太阳较近,通常在所谓的冰线范围内。这意味着它们离太阳足够近,小行星可能携带的任何冰都会升华,或者从固态冰直接变成气体。彗星是冰冷的天体,会显示出模糊的彗尾,彗尾周围通常环绕着一团云。升华的冰携带着尘埃,形成了彗云。此外,彗星通常有轻微的加速度,这种加速度不是由重力推动的,而是由冰的升华推动的,称为非重力加速度。研究人员检查了七颗暗彗星,并估计所有近地天体中有0.5%到60%可能是暗彗星,这些暗彗星没有彗尾,但有非重力加速度。研究人员还认为,这些暗彗星很可能来自小行星带,由于这些暗彗星具有非轨道加速度,研究结果表明小行星带中的小行星含有冰。密歇根大学天文学系研究人员阿斯特-G-泰勒说:"我们认为这些天体来自内主小行星带和/或外主小行星带,这意味着这是将一些冰送入内太阳系的另一种机制。内主带的冰可能比我们想象的要多。可能还有更多这样的天体。这可能是最近天体中的一个重要部分。我们真的不知道,但因为这些发现,我们有了更多的问题。"在之前的工作中,包括泰勒在内的一组研究人员确定了一组近地天体的非重力加速度,并将其命名为"暗彗星"。他们确定,暗彗星的非重力加速度很可能是少量冰升华的结果。在目前的工作中,泰勒和他们的同事希望发现黑暗彗星的来源。他们说:"近地天体在当前轨道上停留的时间并不长,因为近地环境很混乱。它们在近地环境中只能停留大约1000万年。因为太阳系的年龄远远大于这个数字,这意味着近地天体来自某个地方我们不断从另一个更大的来源获得近地天体。"为了确定这一黑暗彗星群的起源,泰勒和他们的合作者创建了动力学模型,为来自不同彗星群的天体分配了非重力加速度。然后,他们根据所分配的非重力加速度,模拟了这些天体在 10 万年内的运行轨迹。研究人员观察到,这些天体中的许多天体最终出现在今天暗色彗星所在的位置,并发现在所有潜在来源中,主小行星带是最有可能的起源地。泰勒说,其中一颗名为 2003 RM 的黑暗彗星在靠近地球的椭圆轨道上经过,然后飞向木星,再从地球上空返回,它的运行轨迹与木星家族彗星的运行轨迹相同,也就是说,它的位置与从轨道上向内撞击的彗星一致。同时,研究发现其余的暗色彗星很可能来自小行星带的内带。由于暗色彗星很可能有冰,这表明主带内部存在冰。然后,研究人员将之前提出的一个理论应用于黑暗彗星群,以确定这些天体为何如此之小且快速旋转。彗星是由冰结合在一起的岩石结构想象一下肮脏的冰块。一旦它们在太阳系的冰线内受到撞击,冰块就会开始释放气体。这会导致天体加速,但也会导致天体快速旋转快到足以让天体碎裂。这些碎片上也会结冰,所以它们也会越转越快,直到碎成更多碎片,随着这种情况的发生,这些物体不断失去冰层,变得更小且旋转得更快。研究人员认为,较大的暗色彗星2003 RM很可能是从小行星带的外主带中被踢出的较大天体,而他们正在研究的其他六个天体很可能来自内主带,是由一个被撞向内侧然后碎裂的天体构成的。编译自/ScitechDaily ... PC版: 手机版:

🔍 发送关键词来寻找群组、频道或视频。

启动SOSO机器人